Los algoritmos o programas informáticos que utilizan datos para determinar el curso de acción o hacer predicciones se denominan inteligencia artificial. Para que la computadora pueda examinar los datos y llegar a un juicio, los científicos pueden desarrollar un conjunto de reglas o instrucciones que la computadora debe seguir. El aprendizaje automático es otra técnica de inteligencia artificial en la que el sistema se entrena a sí mismo sobre cómo evaluar y comprender datos. Como resultado, los algoritmos de aprendizaje automático pueden detectar patrones que son difíciles de reconocer para el ojo o el cerebro humanos. Además, estos algoritmos mejoran en el aprendizaje y la interpretación de los datos a medida que se exponen a información más nueva.
Data Bridge Market Research analiza que se espera que el mercado de inteligencia artificial en la atención sanitaria experimente una tasa compuesta anual del 51,37% durante el período previsto de 2022-2029. Esto indica que el valor de mercado, que fue de 6.350 millones de dólares en 2021, se dispararía hasta los 175.220 millones de dólares en 2029. En enero de 2019, Dartford y Gravesham NHS Trust en el Reino Unido desarrollaron una tecnología portátil impulsada por inteligencia artificial para monitorear a los pacientes cuando son dados de alta. de los hospitales. En octubre de 2019, care.ai y NVIDIA anunciaron una colaboración para proporcionar un monitoreo autónomo de pacientes impulsado por inteligencia artificial en el sector sanitario aprovechando la plataforma de NVIDIA.
Para saber más sobre el estudio, visite:https://www.databridgemarketresearch.com/es/reports/global-artificial-intelligence-in-healthcare-market
Los investigadores también han aplicado el aprendizaje profundo, un subconjunto del aprendizaje automático, en aplicaciones de imágenes del cáncer. El aprendizaje profundo se refiere a algoritmos que categorizan datos en métodos similares al cerebro humano. Las tecnologías de aprendizaje profundo utilizan redes neuronales artificiales para simular cómo nuestras células cerebrales reciben, interpretan y responden a los mensajes del resto de nuestro cuerpo. Para determinar si una masa es cancerosa o no, los médicos realizan pruebas de imágenes del cáncer. ¿Qué tan rápido se desarrolla si es cáncer? ¿A cuánto asciende el diferencial? ¿Se ha recuperado desde que recibió tratamiento? Según los estudios, la IA puede mejorar la rapidez, precisión y confiabilidad de las respuestas de los profesionales médicos. La aplicación de la IA en oncología se puede entender en diferentes etapas:
Fig.1: El papel de la IA en oncología
- Encontrar el cáncer en una etapa temprana Las personas son examinadas de forma rutinaria en busca de indicios de cáncer o células que podrían convertirse en cáncer mediante procedimientos como la mamografía y las pruebas de Papanicolaou. El objetivo es identificar y tratar el cáncer tempranamente antes de que se propague o incluso crezca. Para ayudar con las pruebas de detección del cáncer de mama y otros tipos de pruebas de detección del cáncer, los científicos han creado tecnologías de inteligencia artificial. Durante los últimos 20 años, los algoritmos informáticos basados en IA han ayudado a los médicos a descifrar las mamografías, pero el campo de estudio se está desarrollando rápidamente. Un equipo desarrolló un sistema de inteligencia artificial para ayudar a decidir con qué frecuencia se deben realizar pruebas de detección de cáncer de mama a las mujeres. El algoritmo predice la probabilidad de que una persona contraiga cáncer de mama en los siguientes cinco años en función de los resultados de sus mamografías. El modelo obtuvo mejores resultados en las pruebas que los métodos actuales de predicción del riesgo de cáncer de mama. Investigadores del NCI desarrollaron y probaron un algoritmo de aprendizaje profundo que puede reconocer los precánceres de cuello uterino que deben extirparse o tratarse. Los profesionales de la salud en algunas situaciones de bajos recursos examinan el cuello uterino con una pequeña cámara para detectar precáncer de cuello uterino. Este enfoque es sencillo y sostenible; sin embargo, no es muy preciso ni confiable. En estudios clínicos se ha demostrado que varias tecnologías de inteligencia artificial mejoran el diagnóstico de adenomas, que son crecimientos precancerosos que pueden provocar cáncer de colon. A algunos especialistas les preocupa que estas tecnologías de inteligencia artificial puedan obligar a muchas personas a someterse a tratamientos innecesarios y pruebas adicionales porque sólo una pequeña proporción de los adenomas se convierten en cáncer.
- Detección y diagnóstico de cáncer- La IA tiene la capacidad de ayudar a diagnosticar el cáncer antes en personas que ya presentan signos. Por ejemplo, el modelo de IA creado por el Dr. Turkbey y sus colegas en el Centro de Investigación del Cáncer del NCI puede facilitar que los radiólogos identifiquen el cáncer de próstata que puede ser agresivo en un tipo relativamente nuevo de resonancia magnética de próstata conocida como resonancia magnética multiparamétrica. El modelo de IA desarrollado por el equipo del NCI "puede minimizar la tasa de error y facilitar la curva [de aprendizaje] para los radiólogos en ejercicio", según el Dr. Turkbey. Dijo que el modelo de IA podría actuar como "un experto virtual" para los radiólogos menos experimentados que están aprendiendo a utilizar la resonancia magnética multiparamétrica. Se han desarrollado muchos modelos de IA de aprendizaje profundo para ayudar a los médicos a detectar el cáncer de pulmón en tomografías computarizadas. Existe una proporción significativa de resultados falsos positivos que indican que una persona tiene cáncer de pulmón cuando en realidad no es así porque algunas anomalías no cancerosas en los pulmones pueden parecer en las tomografías computarizadas muy similares al cáncer. En teoría, la IA podría reducir la incidencia de falsos positivos y evitar que algunos pacientes sufran estrés, pruebas de seguimiento y cirugías innecesarias al diferenciar mejor el cáncer de pulmón de las alteraciones no cancerosas en las imágenes de TC. Un equipo de investigadores creó un algoritmo de aprendizaje profundo para descubrir el cáncer de pulmón y evitar otras alteraciones que se asemejen al cáncer.
- Elección de tratamiento contra el cáncer Los médicos también utilizan pruebas de imágenes para recopilar datos cruciales sobre el cáncer, como qué tan rápido se está desarrollando, si se ha propagado y si es probable que regrese después de la terapia. Los médicos pueden utilizar esta información para determinar el mejor curso de acción para sus pacientes. Numerosas investigaciones indican que la IA puede extraer datos de pronóstico de las exploraciones por imágenes de manera más precisa y completa que los humanos actualmente. Por ejemplo, un modelo de aprendizaje profundo desarrollado por la Dra. Harmon y sus asociados puede predecir el riesgo de que un paciente con cáncer de vejiga requiera terapias adicionales además de la cirugía. Según los profesionales médicos, los grupos de células cancerosas que se han desplazado fuera de la vejiga en alrededor del 50% de las personas con tumores en el músculo de la vejiga (cáncer de vejiga con invasión muscular) son demasiado pequeños para ser detectados con métodos convencionales. Estas células no detectadas pueden seguir multiplicándose después de la cirugía si no se eliminan, lo que provoca una recurrencia. Estos pequeños grupos pueden eliminarse mediante quimioterapia, evitando que el cáncer regrese después de la cirugía. Sin embargo, como lo demuestran los ensayos clínicos, podría resultar complicado identificar si los pacientes también necesitan quimioterapia, según el Dr. Harmon. El modelo analiza imágenes digitales del tejido tumoral original para determinar si existen agrupaciones cancerosas microscópicas en los ganglios linfáticos circundantes. En un estudio publicado en 2020, el modelo de aprendizaje profundo superó al método convencional para predecir si el cáncer de vejiga se ha extendido, basándose en varias variables, incluida la edad del paciente y las características específicas del tumor. Cada vez más, se estudia la composición genética del cáncer del paciente para determinar el mejor curso de acción. Investigadores chinos desarrollaron un algoritmo de aprendizaje profundo para predecir la existencia de mutaciones genéticas importantes en el tejido del cáncer de hígado a partir de fotografías del tejido, algo que los patólogos no pueden lograr con solo mirar las imágenes. Los científicos que crearon el algoritmo no saben cómo determina qué cambios genéticos están presentes en el tumor, lo que convierte a su herramienta en un ejemplo de IA que opera de maneras sorprendentes.
- IA en imágenes médicas La predicción del cáncer puede beneficiarse de la inteligencia artificial y el aprendizaje automático. La inteligencia artificial es capaz de detectar enfermedades malignas que ya se han propagado y personas que corren un alto riesgo de contraerlas antes de que lo haga. Esto permite a los profesionales médicos controlar de cerca a estos pacientes y actuar rápidamente cuando sea necesario. Una científica informática del MIT llamada Regina Barzilay estaba interesada en probar la inteligencia artificial (IA) para la predicción del cáncer. El equipo del MIT analizó su potencial para identificar mujeres en riesgo de cáncer de mama antes de que aparezcan síntomas evidentes. Para descubrir qué pacientes tenían cáncer, reunió más de 40.000 mamografías de mujeres durante un período de cuatro años, totalizando alrededor de 89.000, y comparó las exploraciones con el registro nacional de tumores. Luego, Regina usó una selección de estas fotos para entrenar un algoritmo de aprendizaje automático (ML), una especie de IA, y luego usó ese algoritmo para generar predicciones. El algoritmo identificó correctamente al 30% de las futuras pacientes con cáncer de mama como pertenecientes a un grupo de alto riesgo. La IA tiene varios usos en el campo de las imágenes médicas. Identificar y categorizar los tumores malignos es una de las más obvias. La FDA autorizó Paige Prostate, una herramienta de patología para el cáncer basada en inteligencia artificial, en septiembre de 2021. Junto con el visor de patología digital FullFocus, esta herramienta de inteligencia artificial ayuda en la detección del cáncer de próstata. La FDA revisó datos de una investigación clínica donde 16 patólogos evaluaron 527 fotografías de biopsias de próstata en busca de indicadores de cáncer como requisito previo para esta aprobación.
- IA en análisis de sangre Los análisis de sangre con mejoras de IA pueden ayudar a los médicos a detectar el cáncer con mayor precisión. Según un estudio de Cancer Cell International, el perfil sanguíneo, que analiza los perfiles de ctDNA y miRNA en plasma mediante algoritmos de inteligencia artificial, es una forma más eficaz de encontrar y controlar el cáncer que las tomografías computarizadas convencionales. Investigadores del Johns Hopkins Kimmel Cancer Center crearon una técnica de vanguardia basada en inteligencia artificial para detectar el cáncer de pulmón mediante análisis de sangre. Para probar este método se utilizaron muestras de sangre de 796 participantes de EE. UU., Dinamarca y Países Bajos. Los investigadores combinaron este análisis de sangre con biomarcadores de proteínas, factores de riesgo clínicos y tomografías computarizadas de los pacientes. Identificaron correctamente el cáncer en el 91% de las personas con etapas tempranas de la enfermedad y, como resultado, en el 96% de los pacientes con fases avanzadas del cáncer.
- IA en inmunoterapia- La función principal de la IA en inmunoterapia es evaluar los resultados de diversas terapias y ayudar a los médicos a modificar sus prescripciones. Un equipo de investigación del MD Anderson Cancer Center y del UT Southwestern Medical Center desarrolló un método impulsado por IA para determinar si el sistema inmunológico de un paciente reconoce los neoantígenos (péptidos producidos cuando los genomas de las células cancerosas mutan). Estos algoritmos de IA permitirían predecir cómo reaccionarán las células cancerosas a las inmunoterapias. Las células T de nuestro sistema inmunológico siempre están buscando indicios de cáncer y otros organismos invasivos. Estas células se unen entre sí cuando identifican neoantígenos. Sin embargo, algunos neoantígenos no se identifican, lo que favorece la propagación del cáncer. Esta información haría posible la capacidad de anticipar la respuesta del paciente a las inmunoterapias y crear terapias individualizadas basadas en células T y vacunas contra el cáncer.
Se espera que el mercado de inmunooncología (IO) experimente un crecimiento del mercado a una tasa del 8,90% en el período de pronóstico de 2022 a 2029. El mercado de inmunooncología (IO) está segmentado según el tipo, objetivo, indicación, final. Usuarios y canal de distribución. Se prevé que Asia-Pacífico observe una cantidad significativa de crecimiento en la creciente tasa de crecimiento favorable en la adopción de inmunoterapia contra el cáncer. Además, se prevé que el aumento de la incidencia de la enfermedad y, a su vez, el aumento de la tasa de mortalidad impulsen el crecimiento del mercado de inmunooncología (IO) en la región en los próximos años.
Para saber más sobre el estudio, visite:https://www.databridgemarketresearch.com/es/reports/global-immuno-oncology-market
- Desarrollo de fármacos- El mismo medicamento puede responder de manera diferente a distintas formas de cáncer. La IA es capaz de pronosticar cómo distintos fármacos afectarían a las células malignas. Esta información ayuda en la creación de nuevos medicamentos contra el cáncer y el momento de su uso. Por ejemplo, dependiendo del estado mutacional de la célula cancerosa, un equipo de investigación creó un algoritmo de bosque aleatorio que puede predecir la acción de los medicamentos contra el cáncer.
Beneficios de la IA en oncología
La IA generalmente tiene muchas ventajas en el campo médico. Estos son los tres principales beneficios del uso de la inteligencia artificial en la detección y el tratamiento del cáncer:
Fig.2: Beneficios de la IA en oncología
- Medicina y Terapias Personalizadas - Los macrodatos y la inteligencia artificial permiten a los profesionales médicos examinar una variedad de datos sobre el paciente y las células cancerosas para desarrollar tratamientos individualizados. Los efectos secundarios de este tipo de terapia serán menos graves. Se hará menos daño a las células sanas, pero tendrá un mayor efecto sobre las células cancerosas. La IA ayuda a los radiólogos a determinar qué tumores y anomalías son cancerosos y requieren una intervención médica genuina. Según un estudio publicado en el Journal of the National Cancer Institute, los algoritmos de IA pueden identificar lesiones precancerosas en imágenes cervicales y diferenciarlas de otras anomalías para evitar que los pacientes reciban tratamientos innecesarios por pequeños problemas.
- Eliminación de Procedimientos Invasivos- A veces, la naturaleza benigna del tumor se descubre sólo después de la cirugía de extirpación, lo que habría permitido evitar por completo el procedimiento. Estos casos se pueden reducir considerablemente con la ayuda de la IA en el proceso de detección del cáncer. Un estudio, por ejemplo, encontró que la IA puede reducir los procedimientos de conservación de mama en un 30,6%. Las biopsias con aguja guiadas por imágenes se pueden utilizar para entrenar algoritmos de aprendizaje automático para reconocer tumores malignos. Se utilizó un sistema de aprendizaje automático de bosque aleatorio para evaluar a 335 pacientes potenciales con cáncer, y los investigadores descubrieron que detuvo un tercio de los procedimientos innecesarios.
- Reducción de falsos positivos y negativos. La IA para la detección del cáncer aumentará la precisión del diagnóstico y disminuirá los falsos positivos y negativos. Tenemos pruebas gracias a las investigaciones sobre la detección del cáncer de mama. Una de cada diez pacientes femeninas a las que los médicos examinan mamografías obtiene resultados falsos positivos, lo que las obliga a someterse a procedimientos estresantes y pruebas invasivas innecesarias. El equipo de investigación de Google creó un software que utiliza IA para reducir las lecturas de mamografías falsos positivos y falsos negativos en un 6% y un 9%, respectivamente. Otro equipo de investigadores creó un algoritmo de IA para la identificación del cáncer de mama. Este algoritmo ayudó a los radiólogos a reducir las tasas de falsos positivos en un 37,3 % durante un examen.
Desafíos para la IA en oncología y perspectivas futuras
Las interacciones no lineales complejas, la tolerancia a fallos, el procesamiento distribuido simultáneo y el aprendizaje son tareas que la IA puede realizar con facilidad. debido a sus beneficios de autoadaptación, el tratamiento simultáneo de información cuantitativa y cualitativa y los resultados validados de numerosos estudios clínicos en numerosos dominios. No hay duda de que la IA se utiliza en la atención clínica de diversas formas. Explota plenamente las diferentes facetas de la variabilidad clínica y al mismo tiempo aborda la actual falta de universalidad y objetividad en los sistemas expertos. Los hospitales pueden formar a médicos jóvenes en diagnóstico clínico y toma de decisiones mediante el uso de IA. Un número creciente de artículos académicos analizan las notables capacidades de diagnóstico y pronóstico de los sistemas informáticos basados en ML.
Para asegurar su aplicación en el diagnóstico y pronóstico del cáncer, la tecnología de IA enfrenta algunas dificultades importantes que deben superarse. Por ejemplo, no se pueden utilizar datos de entrada sin procesar procedentes de imágenes médicas. Procesar y extraer información de los datos de la imagen es esencial. Se necesitan más estudios para interpretar los resultados del coeficiente de ponderaciones en modelos de redes neuronales, que han sido validados, calculados y tienen intervalos de confianza adecuados debido al desarrollo tecnológico y la adopción generalizada. El campo de la medicina clínica probablemente utilizará RNA con mayor frecuencia como resultado de una mayor investigación sobre ellas. Aunque se reconoce el valor de la IA en esta industria, los científicos informáticos y los profesionales médicos deben trabajar juntos para garantizar que el personal interdisciplinario esté capacitado y colabore. Los profesionales médicos podrán entonces utilizar el potencial de esta tecnología de una manera práctica y rentable. Las garantías de privacidad y seguridad de los datos son un problema importante en relación con el futuro de la IA en la medicina. Aunque los "big data" y las soluciones basadas en ML han generado mucho entusiasmo en los últimos años, actualmente hay muy pocos casos que muestren cómo la IA ha afectado la práctica clínica.
Data Bridge Market Research analiza que se espera que el mercado de diagnóstico del cáncer alcance un valor de 28,21 mil millones de dólares para el año 2029, con una tasa compuesta anual del 7,29% durante el período de pronóstico. El aumento de los casos de cáncer ofrece oportunidades de crecimiento al mercado. El cáncer es la segunda causa de muerte en el mundo y representará 10 millones de muertes en 2020. El cáncer representa aproximadamente una sexta parte de todas las muertes en el mundo (Fuente: Organización Mundial de la Salud). En 2020, se notificaron 19,3 millones de nuevos casos de cáncer y se espera que esa cifra aumente a 30,2 millones en 2040. Este aumento en la incidencia del cáncer se puede atribuir a la creciente población geriátrica, así como a la población en general.
Para saber más sobre el estudio, visite:https://www.databridgemarketresearch.com/es/reports/global-cancer-diagnostics-market