COVID-19 Impact on Pharmaceutical Packaging in Chemicals and Materials Industry

Исследователи дополнили знания о биоактивности одного миллиона молекул с помощью глубокого машинного обучения

  • Без категории
  • 14 сентября 2021 г.

Команда исследователей из отделения структурной биоинформатики и сетевой биологии IRB Барселоны разработала инструмент, который прогнозирует биологическую активность химических соединений, что является ключом к оценке их терапевтического потенциала. Исследователи использовали искусственные нейронные сети для получения экспериментальных данных для одного миллиона соединений и разработали множество инструментов для оценки каждого типа молекул. Команда структурной биоинформатики и сетевой биологии под руководством доктора Патрика Элоя, исследователя из ICREA, использовала глубокие вычислительные модели машинного обучения для завершения сбора информации о биологической активности около 1 миллиона молекул и представила инструмент для прогнозирования биологической активности любой молекулы. даже если экспериментальные данные недоступны.

Этот новый метод основан на базе данных Chemical Checker, которая на сегодняшний день является крупнейшей базой данных профилей биоактивности поддельных лекарств, разработанной той же лабораторией и выпущенной в 2020 году. База данных собирает информацию из 25 биоактивных областей для каждой молекулы. Эти области связаны с химической структурой молекулы, мишенью, с которой она взаимодействует, и изменениями, которые она вызывает на клиническом или клеточном уровне. Однако для большинства соединений подробная информация о механизме действия является неполной. Это означает, что для данного соединения может быть одна или две биологически активные области информации, но не все 25. Поскольку это новое открытие находится в разработке, исследователи будут сравнивать всю доступную экспериментальную информацию с методами глубокого машинного обучения, чтобы завершить все профили активности. для всех соединений, от химического до клинического уровня.

Новый инструмент также позволяет нам прогнозировать пространство биологической активности новых молекул, что важно для процесса открытия лекарств, поскольку мы можем выбрать наиболее подходящих кандидатов и отбросить тех, которые по тем или иным причинам не работают.