Искусственный интеллект, или ИИ, сейчас используется практически во всех секторах, и люди очень сильно зависят от машинного обучения и искусственного интеллекта, поскольку они сокращают большую часть рабочей нагрузки. Индустрия микросхем растет очень быстро, и ее производство также растет очень быстро, потому что многие отрасли используют ее в больших масштабах. В настоящее время компьютерные чипы производятся с использованием особой технологии, называемой атомно-слоевым осаждением (ALD), которая позволяет создавать пленки толщиной до одного атома. Эта технология широко используется для разработки полупроводниковых устройств, но она также находит применение в литиевых батареях, солнечных элементах и других областях, связанных с энергетикой.
Сегодня производители все чаще полагаются на ALD при создании новых типов пленок, но требуется время, чтобы понять, как точно настроить процесс для каждого нового материала. Частично проблема заключается в том, что исследователи в основном используют метод проб и ошибок для определения оптимальных условий выращивания. Однако недавно опубликованное исследование, одно из первых в этой научной области, предполагает, что использование искусственного интеллекта (ИИ) может быть более эффективным. В исследовании ACS Applied Materials and Interfaces исследователи из Аргоннской национальной лаборатории Министерства энергетики США (DOE) описывают несколько подходов на основе искусственного интеллекта для автономной оптимизации процессов борьбы с отмыванием денег. Их работа описывает относительные сильные и слабые стороны каждого подхода, а также идеи, которые можно использовать для более эффективной и экономичной разработки новых процессов. «Все эти алгоритмы обеспечивают гораздо более быстрый способ достижения оптимальных комбинаций, поскольку вам не нужно тратить время на помещение образца в реактор, его извлечение, проведение измерений и т. д., как вы обычно делаете сегодня, — цикл в реальном времени, который связано с реактором», — сказал старший ученый-материаловед из Аргонны Анхель Янгуас Гил, соавтор исследования.