Predictive maintenance has emerged as a transformative approach in industrial operations, leveraging advancements in data analytics, IoT, and AI to improve equipment reliability and reduce downtime. Unlike traditional preventive maintenance, which follows set schedules, predictive maintenance relies on real-time data to assess equipment health and forecast potential failures. This shift enables companies to act only when necessary, optimizing resources and extending asset life. Advancements in IoT sensors and machine learning algorithms are crucial to predictive maintenance's success, allowing continuous monitoring of equipment and early detection of performance anomalies. Sensors gather real-time data on parameters such as temperature, vibration, and pressure, which is then analyzed using machine learning to identify patterns indicating wear or malfunction. Cloud computing further enhances this process, enabling data to be aggregated, processed, and analyzed at scale, providing valuable insights across large fleets of assets. Industries from manufacturing and energy to transportation have adopted predictive maintenance, seeing reduced maintenance costs and enhanced operational efficiency. As technologies continue to evolve, predictive maintenance is expected to become more accurate, scalable, and accessible, paving the way for smarter, data-driven asset management across diverse sectors.