글로벌 예측 유지 관리 시장 규모, 점유율 및 추세 분석 보고서 – 산업 개요 및 2031년까지의 예측

TOC 요청 TOC 요청 분석가에게 문의 분석가에게 문의 지금 구매 지금 구매 구매하기 전에 문의 구매하기 전에 문의 무료 샘플 보고서 무료 샘플 보고서

글로벌 예측 유지 관리 시장 규모, 점유율 및 추세 분석 보고서 – 산업 개요 및 2031년까지의 예측

  • ICT
  • Upcoming Report
  • Nov 2024
  • Global
  • 350 Pages
  • 테이블 수: 220
  • 그림 수: 60

Global Predictive Maintenance Market

시장 규모 (USD 10억)

연평균 성장률 :  % Diagram

Diagram 예측 기간
2024 –2031
Diagram 시장 규모(기준 연도)
USD 6.72 Billion
Diagram 시장 규모(예측 연도)
USD 63.09 Billion
Diagram 연평균 성장률
%
Diagram 주요 시장 플레이어
  • Microsoft
  • IBM
  • SAP
  • SAS Institute
  • Software AG

>글로벌 예측 유지 관리 시장 세분화, 구성 요소(솔루션, 서비스), 배포 모드(클라우드, 온프레미스), 조직 규모(대기업, 중소기업), 수직(제조, 에너지 및 유틸리티, 운송, 정부, 의료, 항공우주 및 방위, 기타), 이해 관계자(MRO, OEM/ODM, 기술 통합자) - 산업 동향 및 2031년까지의 예측.

예측 유지 관리 시장

예측 유지 관리 시장 분석

의사 결정에 대한 귀중한 통찰력을 얻기 위해 새롭고 떠오르는 기술을 더 많이 사용하면서 산업 성장에 기여했습니다. 다양한 수직 최종 사용자는 점점 더 비용 절감과 다운타임이 필요해졌고, 이는 시장 성장을 자극했습니다.

예측 유지 관리 시장 규모

글로벌 예측 유지 보수 시장 규모는 2023년에 67억 2천만 달러로 평가되었으며, 2031년까지 630억 9천만 달러에 도달할 것으로 예상됩니다. 2024년에서 2031년까지의 예측 기간 동안 CAGR은 32.30%입니다.

보고 범위 및 시장 세분화       

속성

예측 유지 관리 주요 시장 통찰력

분할

  • 구성 요소별 : 솔루션, 서비스
  • 배포 모드별 : 클라우드, 온프레미스
  • 조직 규모별 : 대기업, 중소기업
  • 수직별 : 제조, 에너지 및 유틸리티, 운송, 정부, 의료, 항공우주 및 방위, 기타
  • 이해관계자별 : MRO, OEM/ODM, 기술 통합업체

적용 국가

미국, 북미의 캐나다 및 멕시코, 독일, 프랑스, ​​영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽 국가, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양 국가(APAC), 사우디 아라비아, UAE, 남아프리카 공화국, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 중동 및 아프리카(MEA)의 기타 중동 및 아프리카(MEA), 남아메리카의 일부인 브라질, 아르헨티나 및 남아메리카의 기타 국가.

주요 시장 참여자

Microsoft(미국), IBM(미국), SAP(독일), SAS Institute Inc.(미국), Software AG(독일), TIBCO Software Inc.(미국), Hewlett Packard Enterprise Development LP(미국), Altair Engineering Inc.(미국), Splunk Inc.(미국), Oracle(미국), Google(미국), Amazon Web Services, Inc.(미국), General Electric(미국), Schneider Electric(프랑스), Hitachi, Ltd.(일본), PTC(미국), RapidMiner, Inc.(미국), Operational Excellence(OPEX) Group Ltd(영국), Dingo(호주), Factory5(러시아)

시장 기회

  • 고속인터넷 보급률 증가
  • 소규모 산업에서 첨단 기술 도입 증가
  • 증가하는 연구 및 개발 기회

예측 유지 관리 시장 정의

Predictive maintenance software system is employed to watch the performance and condition of any instrumentation or machine whereas operational them. The software system observes the instrumentation victimisation advanced techniques that permits the upkeep of the machinery to be regular before any failure happens. prognosticative maintenance software system has found its application in varied fields like finding three-phase power imbalances from harmonic distortion, distinctive motor electrical phenomenon spikes, heating from dangerous bearings.

Predictive Maintenance Market Dynamics

This section deals with understanding the market drivers, advantages, opportunities, restraints and challenges. All of this is discussed in detail as below:

Drivers

  • Increasing use of emerging technologies to gain valuable insights

The continuous developments in big data, machine-to- machine (M2M) communication, and artificial intelligence have created new possibilities for the disquisition of information deduced from artificial means. IoT bias induce a huge quantum of data from various sources, similar as detectors, cameras, and other connected bias. The data, still, doesn't give any value by itself unless anybody converts it into practicable, contextual information. Big data and data visualization ways enable druggies to gain new perceptivity through batch processing and offline analysis. Real- time data analysis and decision- timber are frequently done manually; but to make it scalable, it's preferred to be done automatically. The main part of AI technology is to probe huge volumes of data produced by various factors of the IoT ecosystem and transfigure the data into meaningful perceptivity. Enterprises are integrating AI into their predefined logical models to automate the data interpretation process and gain real- time perceptivity from the data generated from these IoT bias. AI provides enterprises with fabrics and tools to dissect real- time data and decide multiple use cases for IoT.

  • Increased number of industries globally to induce greater demand and supply in emerging nations  

Growing number of small and medium scale enterprises all around the globe is one of the major factors fostering the growth of the market. In other words, increased number of banking, financial services, and insurance (BFSI), government and public sector, healthcare and life sciences, manufacturing, retail and e-commerce, telecommunication, and IT industries, is directly influencing the growth rate of the market.

Opportunities

  • Real-time condition monitoring to assist in taking prompt actions

Advanced asset operation is decreasingly demanded across nearly every perpendicular. Result providers equipped with AI and ML can collect and turn the vast quantum of client- related data into meaningful perceptivity, as IoT generates a huge quantum of data from connected bias. AI can also be integrated with the IoT bias to optimize various aspects of service delivery, similar as prophetic conservation and quality assessment, without the need for any mortal intervention. AI- grounded IoT results are formerly being espoused in various diligence, and this would only grow as the technology matures. The nonstop developments in big data, M2M communication, enable condition monitoring in real- time. The real- time inputs from detectors, selectors, and other control parameters would not only prognosticate embryonic asset failures but also help companies cover in real- time and take prompt conduct.

Restrictions/Challenges

  • Lack of skilled workforce

Trained workers are needed to handle the rearmost software systems to emplace AI- grounded IoT technologies and skillsets. Hence, being workers are needed to be trained on how to operate new and upgraded systems. Also, diligence are dynamic toward espousing new technologies; still, they're facing a deficit of largely professed pool and complete workers. As utmost of the global merchandisers are organizing prophetic conservation systems, the demand for a largely professed pool is adding. Companies need to acquire moxie in areas, similar as cybersecurity, networking, and operations. Also, they seek to use IoT data for prognosticating issues, precluding failures, optimizing operations, developing new products, furnishing advanced analytics faculty, which includes AI and ML. These technologies would play a critical part in the overall reduction of functional costs. Also, with enterprises integrating AI in IoT, there would be a growing need for functional intelligence- acquainted data critic brigades to handle huge quantities of data generated from IoT bias.

  • Frequent maintenance and upgradation requirement to keep the systems updated

Enterprises are espousing AI- grounded IoT results for prophetic conservation and enhanced client experience. The merchandisers in the request must develop prophetic conservation systems considering two important factors, videlicet conservation and updates. An AI- grounded IoT system needs to be streamlined and maintained as per the changing business conditions to apply technological upgrades. The software also needs to be upgraded, as new factors are added. The new system must be integrated with the being one, as well as the fresh one. With an increase in the number of systems, the conservation cost also increases. Maintaining and upgrading AI- grounded IoT systems is going to be a grueling task for companies that offer results without any interruption.

This  predictive maintenance market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the predictive maintenance market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.

COVID-19 Impact on Predictive Maintenance Market

COVID– 19 has encyclopaedically changed the dynamics of business operations. Though the COVID-19 outbreak has thrown light on sins in business models across verticals, it has offered several openings to digitalize and expand their business across regions as the relinquishment and integration of technologies similar as AI, analytics, IoT, and blockchain has increased in the lockdown period. The retail and manufacturing sectors faced a significant dip in business performance during the first and alternate diggings of 2020. Still, with the vacuity of vaccines and considerable control achieved over the epidemic, these sectors are anticipated to witness rising investments throughout the cast period as prophetic conservation results grow in elevation across different business functions.

Predictive Maintenance Market Scope

The predictive maintenance market is segmented on the basis of component, deployment mode, organization size, vertical, stakeholder. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component

  • Service
    • Managed Services
    • Professional Services
      • System Integration
      • Support and Maintenance
      • Consulting

System Integration

  • Support and Maintenance
  • Consulting

 Deployment Mode

  • On-premises
  • Cloud
    • Public Cloud
    • Private Cloud
    • Hybrid Cloud

 Organization Size

  • Large Enterprises
  • Small and Medium-sized Enterprises (SMEs)

 Vertical

  • Government and Defense
  • Manufacturing
  • Energy and Utilities
  • Transportation and Logistics
  • Healthcare and Life Sciences

Stakeholder

  • MRO
  • OEM/ODM
  • Technology Integrators

Predictive Maintenance Market Regional Analysis

The  predictive maintenance market is analysed and market size insights and trends are provided by country, component, deployment mode, organization size, vertical, stakeholder as referenced above.

예측 유지 관리 시장 보고서에서 다루는 국가  는 북미의 미국, 캐나다 및 멕시코, 유럽의 독일, 프랑스, ​​영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽 국가, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 남아프리카 공화국, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 남미의 일부인 기타 남미입니다.

북미는 예측 유지 관리 시장에서 가장 중요한 시장 점유율을 차지할 것으로 예상됩니다. 북미에서 예측 유지 관리 시장이 확대되는 것을 긍정적으로 보여주는 주요 요인은 이 지역 내에서 증가하는 기술 발전을 수용합니다. 지역 전체에서 예측 유지 관리 플레이어가 확대됨에 따라 시장 성장이 더욱 촉진될 것으로 예상됩니다. 그러나 아시아 태평양 지역은 신흥 경제, 기술 발전 및 자산의 적절한 유지 관리를 통해 최적의 출력을 달성하기 위한 최신 기술 혁신을 도입해야 하는 필요성으로 인해 예측 유지 관리 도입이 꾸준히 증가할 것입니다.

보고서의 국가 섹션은 또한 현재 및 미래 시장 추세에 영향을 미치는 개별 시장 영향 요인과 시장 규제의 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 추세 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향은 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.   

예측 유지 관리 시장 점유율

예측 유지 관리 시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 제공된 위의 데이터 포인트는 예측 유지 관리 시장  과 관련된 회사의 초점에만 관련이 있습니다 . 

시장에서 운영되는 예측 유지 관리 시장 리더는 다음과 같습니다.

  • 마이크로소프트(미국)
  • IBM(미국)
  • SAP(독일)
  • SAS Institute Inc. (미국)
  • 소프트웨어 AG(독일)
  • TIBCO 소프트웨어 주식회사(미국)
  • 휴렛팩커드 엔터프라이즈 개발 LP(미국)
  • 알테어 엔지니어링 주식회사(미국)
  • 스플렁크 주식회사(미국)
  • 오라클(미국)
  • 구글(미국)
  • Amazon Web Services, Inc. (미국)
  • 제너럴 일렉트릭(미국)
  • 슈나이더 일렉트릭(프랑스)
  • 히타치 주식회사(일본)
  • PTC(미국)
  • RapidMiner, Inc. (미국)
  • 운영 우수성(OPEX) 그룹 유한회사(영국)
  • 딩고(호주)
  • Factory5(러시아)

예측 유지 관리 시장의 최신 동향

  • 2021년 7월, Schneider Electric은 운전자가 위협 감소 위치에 영향을 미치는 우회 상태와 위험이 높을 때 공장을 안전하게 운영하는 데 필요한 중요한 경고를 모두 볼 수 있도록 하는 업계 최초의 바이너리 안전 및 사이버 보안 인증 우회 및 알람 운영 소프트웨어 운영인 EcoStruxure TriconexTM Safety View를 출시했습니다.
  • SAS Institute는 2021년 5월 중요한 ​​기본 SASViya 플랫폼에 새로운 데이터 운영 결과를 통합하여 데이터와 논리적 성공의 기반을 지원하는 SAS Viya 플랫폼을 출시했습니다.


SKU-

세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요

  • 대화형 데이터 분석 대시보드
  • 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
  • 사용자 정의 및 질의를 위한 리서치 분석가 액세스
  • 대화형 대시보드를 통한 경쟁자 분석
  • 최신 뉴스, 업데이트 및 추세 분석
  • 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
데모 요청

연구 방법론

데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.

DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.

사용자 정의 가능

Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

자주 묻는 질문

The market is segmented based on Segmentation, By Components (Solution and Services), Deployment Mode (Cloud and On-Premise), Organization Size (Large Enterprises and Small and Medium-Sized Enterprises), Vertical (Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, and Others), Stakeholder (MRO, OEM/ODM, and Technology Integrators) – Industry Trends and Forecast to 2031 .
The Global Predictive Maintenance Market size was valued at USD 6.72 USD Billion in 2023.
The Global Predictive Maintenance Market is projected to grow at a CAGR of 32.3% during the forecast period of 2024 to 2031.
The major players operating in the market include Microsoft, IBM, SAP, SAS Institute , Software AG, TIBCO Software , Hewlett Packard Enterprise Development LP, Altair Engineering , Splunk , Oracle, Google, Amazon Web Services , General Electric, Schneider Electric, Hitachi , PTC, RapidMiner , Operational Excellence Group Ltd, Dingo, Factory5 .
The market report covers data from the U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.