Aperçu
L'intelligence artificielle capable de créer du contenu tel que de l'audio, du texte, du code, de la vidéo, des photos et d'autres données est connue sous le nom d'IA générative. L'IA générative utilise des algorithmes d'apprentissage automatique pour produire des résultats basés sur un ensemble de données d'entraînement, par opposition aux algorithmes d'IA standard, qui peuvent être utilisés pour rechercher des modèles dans un ensemble de données d'entraînement et faire des prédictions. Les sorties de l’IA générative peuvent se trouver sur le même support que l’invite (texte-texte) ou sur un support différent (texte-image ou image-vidéo). Les applications d'IA générative ChatGPT, Bard, DALL-E, Midjourney et DeepMind en sont quelques exemples bien connus. Plus précisément, les modèles d’IA générative reçoivent de grandes quantités de contenu existant pour entraîner les modèles à produire du nouveau contenu. Ils apprennent à identifier des modèles sous-jacents dans l'ensemble de données sur la base d'une distribution de probabilité et, lorsqu'ils y sont invités, à créer des modèles similaires (ou des résultats basés sur ces modèles).
Par exemple,
De plus, une partie de la catégorie générique de l’apprentissage automatique appelée apprentissage profond ou IA générative utilise un réseau neuronal qui lui permet de gérer des modèles plus complexes que l’apprentissage automatique traditionnel. Inspirés du cerveau humain, les réseaux de neurones ne nécessitent pas nécessairement une supervision ou une intervention humaine pour distinguer les différences ou les modèles dans les données d'entraînement.
Selon Data Bridge Market Research, le marché de l’intelligence artificielle devrait connaître une croissance du marché de 26,1 % au cours de la période de prévision de 2021 à 2028. Le rapport de Data Bridge Market Research propose une analyse approfondie et de meilleures informations sur le marché, mettant en évidence le facteurs qui devraient avoir une influence majeure sur sa croissance au cours de la période de prévision. Pour en savoir plus sur l'étude, veuillez suivre le lien ci-dessous
https://www.databridgemarketresearch.com/fr/reports/global-artificial-intelligence-market
Qu’est-ce que l’IA générative ?
L'IA générative fait référence à des modèles d'apprentissage en profondeur qui peuvent utiliser des données brutes pour générer des résultats statistiquement probables lorsque vous y êtes invité. Les modèles génératifs sont utilisés depuis des années en statistique pour analyser des données numériques. L’essor du deep learning a cependant permis de les étendre aux images, à la parole et à d’autres types de données complexes. Parmi la première classe de modèles à réaliser cet exploit croisé figuraient les encodeurs automatiques à variation, ou VAE, introduits en 2013. Les VAE ont été les premiers modèles d'apprentissage en profondeur à être largement utilisés pour générer des images et de la parole réalistes.
L'IA générative peut apprendre des artefacts existants pour générer de nouveaux artefacts réalistes qui reflètent les caractéristiques des données d'entraînement. Il peut produire une variété de contenus nouveaux, tels que des images, des vidéos, de la musique, de la parole, du texte, du code logiciel et des conceptions de produits. L'IA générative utilise plusieurs techniques qui continuent d'évoluer. Au premier plan se trouvent les modèles de base de l'IA, qui sont formés sur un large ensemble de données non étiquetées qui peuvent être utilisées pour différentes tâches, avec des ajustements supplémentaires. Des mathématiques complexes et une énorme puissance de calcul sont nécessaires pour créer ces modèles entraînés, mais il s’agit essentiellement d’algorithmes de prédiction.
Types de modèles d'IA :
Modèle
|
TAPER
|
Génération d'images
|
Traduction d'image à image, Croquis en images réalistes, Traduction de texte à image, Texte à parole
|
Génération audio
|
Édition de la bande-son, réglage automatique
|
Génération de données synthétiques
|
Pseudo-images et deep fakes
|
Génération vidéo
|
|
Source : Altexsoft
Le parcours de l'IA générative
Les risques de l’IA générative sont importants et évoluent rapidement. ChatGPT et les programmes similaires sont formés à l'aide de nombreuses données mises à la disposition du public. Il est essentiel de porter une attention particulière à la manière dont vos entreprises utilisent les plateformes car celles-ci n’ont pas vocation à se conformer au règlement général sur la protection des données (RGPD) et aux autres lois sur le droit d’auteur.
Stratégies clés adoptées par les propriétaires d'entreprise
L'IA générative a fait son chemin dans le monde des affaires, avec 35 % des entreprises l'ayant intégrée, selon l'indice mondial d'adoption de l'IA de 2022. Les outils d'IA générative, dont ChatGPT, analysent de grandes quantités de données pour produire des informations exclusives que les outils traditionnels. les méthodes ne parviennent souvent pas à livrer rapidement. L'IA générative pour les entreprises a un impact considérable, allant de l'automatisation de la création de contenu à l'optimisation de la chaîne d'approvisionnement et à l'amélioration du service client. En combinant l'apprentissage automatique et le traitement du langage naturel, les outils d'IA générative permettent aux entreprises de prendre des décisions éclairées, d'optimiser leurs opérations et d'augmenter leurs bénéfices.
L'intelligence artificielle générative et la réalité étendue sont des outils puissants qui peuvent aider à relever les défis sociétaux urgents et les problèmes commerciaux en augmentant, en élargissant et en étendant l'expérience humaine plutôt qu'en la reproduisant ou en la remplaçant. L'IA générative peut « générer » du texte, de la parole, des images, de la musique, des vidéos et surtout du code. Lorsque cette capacité est associée à un flux d'informations personnelles, utilisé pour personnaliser le moment, le quoi et le comment d'une interaction, la facilité avec laquelle quelqu'un peut faire avancer les choses et l'accessibilité élargie des logiciels augmentent considérablement.
L’IA générative transforme les industries dans un large éventail de secteurs et remodèle les entreprises à un rythme rapide, grâce à sa capacité à générer de nouvelles solutions, à automatiser les procédures et à améliorer les capacités de prise de décision. Il s’agit d’un sous-ensemble de l’intelligence artificielle capable de produire du texte, des graphiques et d’autres types de matériel originaux. Selon les résultats de l’enquête, l’IA générative est un outil puissant qui peut être appliqué aux entreprises de diverses manières. Dans les années à venir, l’IA générative aura probablement un impact encore plus important sur les organisations à mesure que la technologie progressera.
Application de l'IA générative
L’avènement de l’intelligence artificielle (IA) a eu un impact significatif sur la manière dont les entreprises fonctionnent et gèrent leurs flux de travail quotidiens. L'émergence de diverses applications et outils d'IA a permis aux entreprises de prendre des décisions plus judicieuses et d'automatiser les tâches répétitives, rendant ainsi les opérations plus efficientes et efficaces. Les applications de productivité professionnelle telles que la messagerie électronique et le traitement de texte peuvent désormais être améliorées par l'automatisation pour accroître l'efficacité et la précision grâce aux développements les plus récents en matière de capacités d'IA générative. La mise en œuvre par Microsoft de GPT-3.5 dans l'édition premium de Teams est une illustration remarquable de la puissance de l'IA générative. En créant automatiquement des sections, des titres et des marqueurs personnalisés, cet outil efficace améliore les enregistrements des réunions. Même les mentions peuvent être mises en évidence, ce qui vous permet de localiser plus facilement les passages les plus cruciaux de la conversation.
Création de contenu
La création de contenu de haute qualité est l'une des tâches les plus ardues et les plus longues du monde de l'entreprise, qu'il s'agisse de produire des descriptions de produits, du matériel promotionnel ou même des articles entiers. Dans de tels cas, les entreprises peuvent tirer parti de la technologie de l’IA générative pour générer un contenu de qualité acceptable dans un laps de temps limité. En utilisant des algorithmes de traitement du langage naturel et d’apprentissage automatique, les outils d’IA générative peuvent évaluer le contenu existant et créer un nouveau contenu de haute qualité répondant à des normes spécifiques. Cela peut impliquer des considérations telles que le ton, le style et même le public ciblé.
Service client
Le service client est un domaine vital dans lequel les outils d'IA générative comme ChatGPT peuvent résoudre des problèmes commerciaux difficiles. Les chatbots alimentés par ChatGPT peuvent fournir aux clients des réponses rapides et précises à leurs demandes, améliorant ainsi l'expérience client globale. Ils peuvent également faire des suggestions personnalisées aux clients en fonction de leur historique d’achat et de leurs préférences.
Par exemple,
Fonctionnement juridique
L'aide aux opérations juridiques d'une entreprise est l'une des applications commerciales génératives les plus importantes. Les entreprises peuvent tirer des avantages considérables de l’utilisation d’outils d’IA générative dans leurs services juridiques. Grâce à la capacité d’effectuer des recherches juridiques, d’examiner la jurisprudence et de formuler des documents juridiques, l’IA générative a le potentiel de permettre aux équipes juridiques de fonctionner de manière plus compétente et plus efficace.
Par exemple,
Gestion des processus RH
Les instruments d'intelligence artificielle tels que ChatGPT ont le potentiel d'offrir un soutien significatif aux opérations RH des entreprises. ChatGPT, grâce au traitement du langage naturel et aux techniques d'apprentissage automatique, peut mécaniser les tâches RH répétitives tout en fournissant des réponses exactes et rapides aux demandes du personnel.
Par exemple, les entreprises peuvent exploiter la puissance de l’IA générative pour concevoir un assistant RH virtuel. Cet assistant virtuel peut aider les employés dans des tâches telles que la gestion des congés, l'administration des avantages sociaux et l'introduction de nouvelles recrues dans l'organisation. De plus, le chatbot peut proposer aux travailleurs des recommandations de développement de carrière personnalisées en fonction de leurs compétences et de leurs intérêts, améliorant ainsi la participation et la rétention des employés. En outre, l’IA générative peut être utilisée pour mettre en place des mesures de prévention de la tricherie lors des tests d’entrée en ligne.
Analyse des données
La technologie de l’IA générative en entreprise offre un avantage significatif en matière d’analyse des données en révélant des modèles et des tendances cachés qui peuvent échapper à la perception humaine. La capacité de l’IA à révéler de telles informations offre aux entreprises la possibilité d’identifier de nouveaux domaines de croissance, d’optimiser leurs opérations et d’accroître la satisfaction de leurs clients.
La capacité d’analyse des sentiments de l’IA générative constitue un excellent cas d’utilisation dans l’analyse de données. Des outils tels que ChatGPT peuvent analyser les données des réseaux sociaux pour identifier la disposition des clients envers une marque, un produit ou un service. Les entreprises peuvent tirer parti des avantages de l’IA générative en utilisant ces informations. Ils peuvent affiner leurs stratégies marketing, développer une compréhension approfondie de leurs clients et améliorer leur satisfaction à l'aide de ces données. De plus, les outils d’IA générative ont le potentiel d’analyser de grandes quantités de données et de détecter les risques potentiels. De telles informations analytiques offrent aux entreprises utilisant l’IA générative la capacité d’identifier et de résoudre de manière proactive les problèmes potentiels avant qu’ils ne s’aggravent. En analysant les commentaires et le comportement des clients, la technologie d’IA générative en entreprise peut identifier des modèles qui signifient un risque élevé de désabonnement des clients. Cette fonctionnalité permet aux entreprises de s'attaquer de manière proactive à ces tendances, fidélisant ainsi les clients grâce à des offres et des incitations personnalisées.
Améliorer les ventes et les objectifs dans une organisation
De nombreuses organisations utilisent l’IA générative à des fins commerciales, notamment pour améliorer leurs ventes. L'intelligence artificielle générative (IA) gagne en importance dans le monde des affaires comme moyen d'augmenter les ventes et de rester compétitif. Une application spécifique de cette technologie implique l'utilisation de modèles de langage génératifs pour créer des descriptions de produits personnalisées qui répondent aux besoins et préférences individuels des clients. Grâce à l'analyse des données et du comportement des clients, l'IA générative est capable de générer des descriptions uniques et convaincantes. L’optimisation des prix est une autre façon de mettre à profit la technologie de l’IA générative en entreprise. En analysant les tendances du marché, le comportement des clients et les prix des concurrents, les modèles génératifs peuvent générer des prix optimaux pour les produits ou services. Cela permet aux entreprises de maximiser leurs revenus tout en offrant de la valeur à leurs clients.
De plus, l’IA générative peut être utilisée à des fins commerciales par les entreprises qui souhaitent obtenir de l’aide pour la segmentation de la clientèle et les campagnes marketing ciblées. En examinant les données clients, les modèles génératifs peuvent détecter des modèles et créer des campagnes ciblées qui séduiront des segments de clientèle spécifiques.
Développement de nouveaux produits
Le développement de nouveaux produits est une autre excellente utilisation de l’IA générative pour les entreprises. Développer des produits innovants et accélérer le processus de conception peut constituer un dilemme commercial complexe pour de nombreuses entreprises. Néanmoins, il existe des méthodologies créatives pour surmonter ces obstacles, et l’une d’entre elles consiste à utiliser des mécanismes alimentés par l’intelligence artificielle.
En exploitant l’IA, les entreprises peuvent examiner rapidement de grandes quantités de données et produire des conceptions optimisées fondées sur des paramètres spécifiques. Cela peut réduire considérablement la durée et les dépenses de développement de produits tout en garantissant la qualité et les performances.
Par exemple,
Détection de fraude
Pour résoudre le problème complexe de la détection des fraudes dans le secteur des entreprises, les entreprises peuvent utiliser des outils basés sur l’IA. Ces outils ont la capacité de détecter et de contrecarrer activement divers types d’activités frauduleuses. Une application avantageuse de l’utilisation de l’IA générative pour les entreprises concerne l’identification de faux documents d’identité. Ces outils analysent et authentifient rapidement les documents d'identité tels que les passeports, les permis de conduire, etc. pour prévenir les activités frauduleuses.
De plus, les entreprises peuvent utiliser des outils basés sur l’IA pour identifier la fraude aux paiements. Ces outils examinent les données de paiement et reconnaissent les transactions ou modèles douteux, permettant ainsi aux entreprises de prendre les mesures appropriées et de prévenir les activités frauduleuses.
Un autre domaine dans lequel les outils de détection de fraude basés sur l’IA peuvent être utiles est la vérification des faux comptes. Ces outils examinent le comportement et les données des utilisateurs pour détecter les faux comptes et les empêcher d'accéder à la plateforme ou d'initier des transactions frauduleuses.
Les défis rencontrés par l'IA générative
L’intelligence artificielle (IA) générative est devenue très populaire, mais son adoption par les entreprises comporte un certain degré de risque éthique. Avec la généralisation de l’IA générative, les entreprises ont la responsabilité de s’assurer qu’elles utilisent cette technologie de manière éthique et d’atténuer les dommages potentiels. Vous trouverez ci-dessous les quelques défis auxquels les organisations pourraient être confrontées lors de l'utilisation de l'IA générative dans leur entreprise :
Conclusion
Alors que les chatbots qui génèrent du texte, tels que ChatGPT, ont attiré beaucoup d'attention, l'IA générative peut également produire d'autres types de matériel, comme des graphiques, des vidéos, de l'audio et du code informatique. De plus, il a la capacité de classer, modifier, résumer, répondre aux demandes de renseignements et créer du nouveau matériel pour les organisations. En modifiant la façon dont le travail est effectué au niveau des activités dans les fonctions commerciales et les flux de travail, chacune de ces actions a le potentiel de générer de la valeur. À mesure que la technologie évolue et mûrit, ces types d’IA générative peuvent être de plus en plus intégrés aux flux de travail de l’entreprise pour automatiser des tâches et effectuer directement des actions spécifiques. Cependant, l’IA générative peut présenter divers risques, car les modèles peuvent générer des biais algorithmiques en raison de données de formation imparfaites ou de décisions prises par les ingénieurs développant les modèles. En outre, les modèles peuvent produire des réponses différentes aux mêmes invites, ce qui empêche l'utilisateur d'évaluer l'exactitude et la fiabilité des résultats.
DBMR a servi plus de 40 % des entreprises Fortune 500 à l'échelle internationale et dispose d'un réseau de plus de 5 000 clients. Notre équipe se fera un plaisir de vous aider avec vos questions. Visite, https://www.databridgemarketresearch.com/fr/contact
Contactez-nousCybersécurité : protection des données des utilisateurs en ligne
Cybersécurité : protection des données des utilisateurs en ligne
Cybersécurité : protection des données des utilisateurs en ligne
Cybersécurité : protection des données des utilisateurs en ligne
Cybersécurité : protection des données des utilisateurs en ligne