تقرير تحليل حجم السوق العالمية للصيانة التنبؤية وحصتها واتجاهاتها – نظرة عامة على الصناعة وتوقعاتها حتى عام 2031

Request for TOC طلب جدول المحتويات Speak to Analyst تحدث إلى المحلل Buy Now اشتري الآن Inquire Before Buying استفسر قبل Free Sample Report تقرير عينة مجاني

تقرير تحليل حجم السوق العالمية للصيانة التنبؤية وحصتها واتجاهاتها – نظرة عامة على الصناعة وتوقعاتها حتى عام 2031

  • ICT
  • Upcoming Report
  • Nov 2024
  • Global
  • 350 الصفحات
  • عدد الجداول: 220
  • عدد الأرقام: 60

Global Predictive Maintenance Market

حجم السوق بالمليار دولار أمريكي

CAGR :  % Diagram

Diagram فترة التنبؤ
2024 –2031
Diagram حجم السوق (السنة الأساسية)
USD 6.72 Billion
Diagram حجم السوق (سنة التنبؤ)
USD 63.09 Billion
Diagram CAGR
%
Diagram اللاعبين الرئيسيين في الأسواق
  • Microsoft
  • IBM
  • SAP
  • SAS Institute
  • Software AG

>تجزئة سوق الصيانة التنبؤية العالمية، حسب المكونات (الحلول والخدمات)، ووضع النشر (السحابة وفي الموقع)، وحجم المنظمة (الشركات الكبيرة والشركات الصغيرة والمتوسطة الحجم)، والقطاع الرأسي (التصنيع والطاقة والمرافق والنقل والحكومة والرعاية الصحية والفضاء والدفاع وغيرها)، وأصحاب المصلحة (MRO وOEM/ODM ومُدمجو التكنولوجيا) - اتجاهات الصناعة والتوقعات حتى عام 2031

سوق الصيانة التنبؤية

تحليل سوق الصيانة التنبؤية

لقد ظهرت الصيانة التنبؤية كنهج تحويلي في العمليات الصناعية، مستفيدة من التطورات في تحليلات البيانات، وإنترنت الأشياء، والذكاء الاصطناعي لتحسين موثوقية المعدات والحد من وقت التوقف عن العمل. على عكس الصيانة الوقائية التقليدية، التي تتبع جداول زمنية محددة، تعتمد الصيانة التنبؤية على البيانات في الوقت الفعلي لتقييم صحة المعدات والتنبؤ بالأعطال المحتملة. يتيح هذا التحول للشركات التصرف فقط عند الضرورة، وتحسين الموارد وإطالة عمر الأصول. تعد التطورات في أجهزة استشعار إنترنت الأشياء وخوارزميات التعلم الآلي أمرًا بالغ الأهمية لنجاح الصيانة التنبؤية، مما يسمح بالمراقبة المستمرة للمعدات والكشف المبكر عن تشوهات الأداء. تجمع أجهزة الاستشعار بيانات في الوقت الفعلي حول معلمات مثل درجة الحرارة والاهتزاز والضغط، والتي يتم تحليلها بعد ذلك باستخدام التعلم الآلي لتحديد الأنماط التي تشير إلى التآكل أو العطل. تعمل الحوسبة السحابية على تعزيز هذه العملية بشكل أكبر، مما يتيح تجميع البيانات ومعالجتها وتحليلها على نطاق واسع، مما يوفر رؤى قيمة عبر أساطيل كبيرة من الأصول. تبنت الصناعات من التصنيع والطاقة إلى النقل الصيانة التنبؤية، مما أدى إلى انخفاض تكاليف الصيانة وتعزيز الكفاءة التشغيلية. مع استمرار تطور التكنولوجيات، من المتوقع أن تصبح الصيانة التنبؤية أكثر دقة وقابلية للتطوير وإمكانية الوصول إليها، مما يمهد الطريق لإدارة الأصول بشكل أكثر ذكاءً وموجهة بالبيانات عبر قطاعات متنوعة.

حجم سوق الصيانة التنبؤية

تم تقييم حجم سوق الصيانة التنبؤية العالمية بنحو 6.72 مليار دولار أمريكي في عام 2023 ومن المتوقع أن يصل إلى 63.09 مليار دولار أمريكي بحلول عام 2031، مع معدل نمو سنوي مركب بنسبة 32.30٪ خلال الفترة المتوقعة من 2024 إلى 2031. بالإضافة إلى رؤى السوق مثل القيمة السوقية ومعدل النمو وشرائح السوق والتغطية الجغرافية واللاعبين في السوق وسيناريو السوق، يتضمن تقرير السوق الذي أعده فريق أبحاث سوق Data Bridge تحليلًا متعمقًا من الخبراء وتحليل الاستيراد / التصدير وتحليل التسعير وتحليل استهلاك الإنتاج وتحليل الهاون.

اتجاهات سوق الصيانة التنبؤية

"صعود حلول الصيانة التنبؤية المستندة إلى السحابة"

The predictive maintenance market is experiencing rapid growth, driven by the integration of IoT, AI, and big data analytics to enhance asset performance and reduce downtime. One key trend shaping this market is the rise of cloud-based predictive maintenance solutions. These solutions enable companies to collect and analyze massive amounts of equipment data in real time, often from remote locations, making it easier for organizations to predict failures before they occur. For instance, General Electric has integrated cloud-based predictive maintenance into its industrial equipment, allowing clients to monitor machinery health continuously and make data-driven maintenance decisions. This approach improves operational efficiency and reduces maintenance costs. As industries continue to adopt cloud-based platforms, the predictive maintenance market is expected to expand, with companies seeking scalable, flexible solutions to drive productivity and extend asset lifespan.

Report Scope and Predictive Maintenance Market Segmentation     

Attributes

Predictive Maintenance Key Market Insights

Segments Covered

  • By Components: Solution and Services
  • By Deployment Mode: Cloud and On-Premise
  • By Organization Size: Large Enterprises and Small and Medium-Sized Enterprises
  • By Vertical: Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, and Others
  • By Stakeholder: MRO, OEM/ODM, and Technology Integrators

Countries Covered

U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America

Key Market Players

Microsoft (U.S.), IBM (U.S.), SAP (Germany), SAS Institute Inc. (U.S.), Software GmbH (Germany), Cloud Software Group, Inc. (U.S.), Hewlett Packard Enterprise Development LP (U.S.), Altair Engineering Inc. (U.S.), Splunk LLC (U.S.), Oracle (U.S.), Google (U.S.), Amazon Web Services, Inc. (U.S.), General Electric Company (U.S.), Schneider Electric (France), Hitachi, Ltd. (Japan), PTC (U.S.), and DINGO Software Pty. Ltd (Australia)

Market Opportunities

  • Increasing Integration of the Internet of Things (IoT)
  • Increasing Emphasis on Cost Reduction

Value Added Data Infosets

In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.

Predictive Maintenance Market Definition

Predictive maintenance software systems are used to monitor the performance and condition of equipment or machinery during operation. This software leverages advanced techniques to schedule maintenance before any failures occur, ensuring equipment reliability. Predictive maintenance software has applications across various fields, including detecting three-phase power imbalances from harmonic distortion, identifying motor capacitance spikes, and pinpointing overheating issues due to faulty bearings.

Predictive Maintenance Market Dynamics

Drivers

  • Growing Adoption of Emerging Technologies to Extract Valuable Insights

Continuous advancements in big data, machine-to-machine (M2M) communication, and artificial intelligence (AI) are driving significant growth in the predictive maintenance market by enabling deeper insights from vast amounts of data generated by IoT devices. These devices collect enormous data from sensors, cameras, and other connected sources, which must be transformed into actionable information to hold real value. Techniques in big data processing and data visualization empower users to derive insights through batch processing and offline analysis, while real-time data interpretation increasingly relies on automation for scalability. AI plays a critical role by analyzing the massive volumes of data generated across the IoT ecosystem, converting it into valuable insights that organizations can use for timely decision-making. By integrating AI into their analytics models, businesses can automate data interpretation and gain real-time, actionable insights from IoT data streams, creating a powerful driver for predictive maintenance solutions across industries.

  • Growing Number of Industries Worldwide Driving Higher Demand and Supply

The increasing number of industries worldwide is fueling greater demand and supply, particularly in emerging nations, where industrialization is rapidly accelerating. As countries such as India, China, and Brazil continue to expand their manufacturing and technological sectors, the need for advanced solutions such as predictive maintenance grows. For instance, in India, the automotive and manufacturing industries are adopting predictive maintenance technologies to improve operational efficiency and reduce downtime, thus driving the demand for such solutions. This surge in industrial activity across emerging nations is a significant market driver, as companies seek scalable, cost-effective tools to manage growing infrastructure and ensure reliable operations. The expanded industrial base in these regions is leading to increased demand for predictive maintenance software and services, creating a substantial opportunity for suppliers to meet this rising need.

Opportunities

  • Increasing Integration of the Internet of Things (IoT)

The integration of the Internet of Things (IoT) into predictive maintenance solutions has significantly expanded the market opportunities by enabling continuous, real-time monitoring of equipment and machinery. IoT devices, such as smart sensors and smart meters, collect vast amounts of data on parameters such as temperature, vibration, pressure, and humidity. This data is then analyzed through advanced algorithms and machine learning models to predict potential equipment failures before they occur. For instance, in the manufacturing industry, IoT-enabled predictive maintenance systems can detect abnormal vibrations in machinery, alerting maintenance teams to conduct repairs before a failure disrupts production. The growing adoption of IoT in industries such as automotive, energy, and manufacturing has created a burgeoning market for IoT-based predictive maintenance solutions. This demand is further amplified by the ability of IoT to reduce unplanned downtime, extend the lifespan of equipment, and minimize repair costs, positioning IoT as a key driver of the predictive maintenance market. As more businesses adopt IoT devices and connected systems, the need for robust, scalable predictive maintenance solutions will continue to rise, representing a lucrative growth opportunity for tech providers in the space.

  • Increasing Emphasis on Cost Reduction

Predictive maintenance presents a compelling cost-reduction opportunity for businesses by minimizing unexpected equipment failures, optimizing spare parts inventories, and reducing labor costs. By using data-driven insights to anticipate and prevent equipment breakdowns, businesses can avoid costly downtime and the expensive repairs often associated with unexpected failures. For instance, in the transportation sector, predictive maintenance systems can forecast when a vehicle’s engine parts will wear out, allowing companies to schedule repairs at a convenient time and prevent costly, disruptive breakdowns. Similarly, in manufacturing, predictive maintenance helps optimize spare parts inventory by ensuring that parts are ordered only when needed, avoiding overstocking or understocking. Moreover, it reduces the need for emergency repair teams and overtime labor, as maintenance can be scheduled during non-peak hours, thereby saving on operational costs. This cost-saving potential is a significant market opportunity, as companies across industries are increasingly seeking ways to reduce operational expenses while maintaining high levels of efficiency and performance. With these financial benefits, the demand for predictive maintenance solutions continues to rise, presenting a strong growth opportunity for solution providers in the market.

Restraints/Challenges

  • Lack of Skilled Workforce

The implementation of AI-based IoT technologies and advanced software systems requires skilled workers trained to operate and manage these new and upgraded systems. However, industries are facing a shortage of highly trained professionals with the necessary expertise. As global manufacturers adopt predictive maintenance systems, the demand for skilled labor is growing. Companies need to develop expertise in areas such as cybersecurity, networking, and operations to effectively utilize IoT data for forecasting issues, preventing failures, optimizing operations, and enhancing product development. Additionally, the integration of AI and machine learning (ML) into IoT systems is expected to play a key role in reducing operational costs. As AI is incorporated into IoT, there will be an increasing need for teams of data analysts who specialize in handling and interpreting the vast amounts of data generated by IoT devices to provide actionable insights.

  • Need for Regular Maintenance and System Upgrades

High costs and investment requirements pose a considerable challenge in the Predictive Maintenance market, as organizations often face significant financial barriers when implementing advanced Predictive Maintenance solutions. The integration of sophisticated technologies, such as biometric systems and artificial intelligence, can entail substantial initial investments in both software and hardware. For instance, deploying a comprehensive Predictive Maintenance system across an organization can cost hundreds of thousands of dollars, which may be prohibitive for smaller businesses or those operating with tight budgets. Furthermore, ongoing maintenance and updates to these systems can add to the financial burden, making it challenging for businesses to allocate resources effectively. As a result, the high costs associated with Predictive Maintenance technologies represent a significant market challenge that providers must overcome to facilitate broader adoption across diverse sectors.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.

Predictive Maintenance Market Scope

The market is segmented on the basis of component, deployment mode, organization size, vertical, and stakeholder. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component

  • Service
    • Managed Services
    • Professional Services

System Integration

  • Support and Maintenance
  • Consulting

 Deployment Mode

  • On-premises
  • Cloud
    • Public Cloud
    • Private Cloud
    • Hybrid Cloud

 Organization Size

  • Large Enterprises
  • Small and Medium-sized Enterprises (SMEs)

 Vertical

  • Government and Defense
  • Manufacturing
  • Energy and Utilities
  • Transportation and Logistics
  • Healthcare and Life Sciences

Stakeholder

  • MRO
  • OEM/ODM
  • Technology Integrators

 Predictive Maintenance Market Regional Analysis

The market is analyzed and market size insights and trends are provided by component, deployment mode, organization size, vertical, and stakeholder as referenced above.

الدول المشمولة في تقرير السوق هي الولايات المتحدة وكندا والمكسيك في أمريكا الشمالية وألمانيا والسويد وبولندا والدنمارك وإيطاليا والمملكة المتحدة وفرنسا وإسبانيا وهولندا وبلجيكا وسويسرا وتركيا وروسيا وبقية أوروبا في أوروبا واليابان والصين والهند وكوريا الجنوبية ونيوزيلندا وفيتنام وأستراليا وسنغافورة وماليزيا وتايلاند وإندونيسيا والفلبين وبقية دول آسيا والمحيط الهادئ (APAC) في آسيا والمحيط الهادئ (APAC) والبرازيل والأرجنتين وبقية دول أمريكا الجنوبية كجزء من أمريكا الجنوبية والإمارات العربية المتحدة والمملكة العربية السعودية وعمان وقطر والكويت وجنوب إفريقيا وبقية دول الشرق الأوسط وأفريقيا (MEA) كجزء من الشرق الأوسط وأفريقيا (MEA).

من المتوقع أن تهيمن أمريكا الشمالية على سوق الصيانة التنبؤية، مدفوعة بالتقدم التكنولوجي الكبير في المنطقة. ومن المتوقع أيضًا أن يساهم العدد المتزايد من اللاعبين الذين يقدمون حلول الصيانة التنبؤية في نمو السوق. ومع تبني المزيد من الشركات لهذه الحلول، سيرتفع الطلب على تقنيات الصيانة التنبؤية، مما يعزز السوق بشكل أكبر. بالإضافة إلى ذلك، فإن وجود الشركات الرائدة والابتكارات المستمرة في المنطقة من شأنه أن يدعم التوسع المستمر في السوق.

من المتوقع أن تشهد منطقة آسيا والمحيط الهادئ نموًا مطردًا في تبني الصيانة التنبؤية، مدفوعة بالاقتصادات الناشئة في المنطقة. إن التقدم التكنولوجي والحاجة المتزايدة للشركات لتحسين أداء الأصول من خلال استراتيجيات الصيانة الفعّالة هي عوامل رئيسية تغذي هذا النمو. ومع سعي الصناعات إلى تعزيز الإنتاجية والحد من وقت التوقف، أصبحت تقنيات الصيانة التنبؤية ضرورية. وعلاوة على ذلك، فإن تركيز المنطقة على تبني الابتكارات المتطورة من شأنه أن يعمل على تسريع دمج حلول الصيانة التنبؤية.

كما يوفر قسم الدولة في التقرير عوامل التأثير الفردية على السوق والتغيرات في تنظيم السوق التي تؤثر على الاتجاهات الحالية والمستقبلية للسوق. نقاط البيانات مثل تحليل سلسلة القيمة المصب والمصب، والاتجاهات الفنية وتحليل قوى بورتر الخمس، ودراسات الحالة هي بعض المؤشرات المستخدمة للتنبؤ بسيناريو السوق للدول الفردية. كما يتم النظر في وجود وتوافر العلامات التجارية العالمية والتحديات التي تواجهها بسبب المنافسة الكبيرة أو النادرة من العلامات التجارية المحلية والمحلية، وتأثير التعريفات الجمركية المحلية وطرق التجارة أثناء تقديم تحليل توقعات لبيانات الدولة.

حصة سوق الصيانة التنبؤية

يوفر المشهد التنافسي للسوق تفاصيل حسب المنافس. وتشمل التفاصيل نظرة عامة على الشركة، والبيانات المالية للشركة، والإيرادات المولدة، وإمكانات السوق، والاستثمار في البحث والتطوير، ومبادرات السوق الجديدة، والحضور العالمي، ومواقع الإنتاج والمرافق، والقدرات الإنتاجية، ونقاط القوة والضعف في الشركة، وإطلاق المنتج، وعرض المنتج ونطاقه، وهيمنة التطبيق. وتتعلق نقاط البيانات المذكورة أعلاه فقط بتركيز الشركات فيما يتعلق بالسوق.

الشركات الرائدة في سوق الصيانة التنبؤية العاملة في السوق هي:

  • مايكروسوفت (الولايات المتحدة)
  • آي بي إم (الولايات المتحدة)
  • SAP (ألمانيا)
  • معهد SAS (الولايات المتحدة)
  • شركة سوفت وير المحدودة (ألمانيا)
  • مجموعة برامج السحابة، المحدودة (الولايات المتحدة)
  • شركة هيوليت باكارد لتطوير المشاريع (الولايات المتحدة)
  • شركة ألتير للهندسة (الولايات المتحدة)
  • شركة سبلانك المحدودة (الولايات المتحدة)
  • أوراكل (الولايات المتحدة)
  • جوجل (الولايات المتحدة)
  • Amazon Web Services, Inc. (الولايات المتحدة)
  • شركة جنرال إلكتريك (الولايات المتحدة)
  • شنايدر إلكتريك (فرنسا)
  • شركة هيتاشي المحدودة (اليابان)
  • PTC (الولايات المتحدة)
  • شركة دينجو للبرمجيات المحدودة (أستراليا)

أحدث التطورات في سوق الصيانة التنبؤية

  • في أغسطس 2023، أطلقت شركة Honeywell، وهي شركة مقرها الولايات المتحدة، أجهزة إرسال Versatilis، وهو حل مصمم لمراقبة حالة المعدات الدوارة عبر مختلف الصناعات
  • في يونيو 2023، استحوذت شركة أكسنتشر على شركة Nextira، الشريك الرائد لشركة Amazon Web Services (AWS)، لتعزيز قدراتها الهندسية داخل Accenture Cloud First. سيمكن هذا الاستحواذ شركة أكسنتشر من تقديم تحليلات تنبؤية وابتكارات سحابية أصلية وتجارب غامرة للعملاء، والاستفادة من حلول AWS لتوفير قدرات سحابية شاملة
  • في مايو 2023، دخلت شركة Cisco Systems وشركة NTT، وهي شركة تقدم خدمات البنية التحتية للاتصالات، في شراكة لتطوير حلول توفر رؤى البيانات في الوقت الفعلي، وتحسين عملية اتخاذ القرار، وتعزيز الأمان. يركز تعاونهما على الصيانة التنبؤية، وإدارة سلسلة التوريد، وتتبع الأصول
  • في يونيو 2022، استحوذت شركة Siemens، ومقرها المملكة المتحدة، على Senseye لتعزيز محفظتها في الصيانة التنبؤية وذكاء الأصول
  • في يونيو 2022، دخلت شركة Microsoft، التي يقع مقرها الرئيسي في الولايات المتحدة، في شراكة مع شركة Schneider Electric، التي يقع مقرها في فرنسا، لتقديم حلول صيانة متقدمة تعمل على تعزيز إدارة الطاقة وأداء الأصول والكفاءة التشغيلية
  • في يوليو 2021، أطلقت شركة شنايدر إلكتريك EcoStruxure TriconexTM Safety View، وهو برنامج رائد لإدارة التجاوز والإنذارات معتمد من قبل شركتي Schneider Electric وSecure. يسمح هذا الحل للمشغلين بمراقبة حالة التجاوز والإنذارات الحرجة للحفاظ على عمليات آمنة في ظل ظروف عالية الخطورة
  • في مايو 2021، أصدر معهد SAS نظام SAS Viya، منصته السحابية القوية لإدارة البيانات والتحليلات، بهدف تمكين النجاح القائم على البيانات من خلال حلول متكاملة جديدة لعمليات البيانات


SKU-

احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم

  • لوحة معلومات تحليل البيانات التفاعلية
  • لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
  • إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
  • تحليل المنافسين باستخدام لوحة معلومات تفاعلية
  • آخر الأخبار والتحديثات وتحليل الاتجاهات
  • استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
طلب التجريبي

منهجية البحث

يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.

منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.

التخصيص متاح

تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.

Frequently Asked Questions

The market is segmented based on Segmentation, By Components (Solution and Services), Deployment Mode (Cloud and On-Premise), Organization Size (Large Enterprises and Small and Medium-Sized Enterprises), Vertical (Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, and Others), Stakeholder (MRO, OEM/ODM, and Technology Integrators) – Industry Trends and Forecast to 2031 .
The Global Predictive Maintenance Market size was valued at USD 6.72 USD Billion in 2023.
The Global Predictive Maintenance Market is projected to grow at a CAGR of 32.3% during the forecast period of 2024 to 2031.
The major players operating in the market include Microsoft, IBM, SAP, SAS Institute , Software AG, TIBCO Software , Hewlett Packard Enterprise Development LP, Altair Engineering , Splunk , Oracle, Google, Amazon Web Services , General Electric, Schneider Electric, Hitachi , PTC, RapidMiner , Operational Excellence Group Ltd, Dingo, Factory5 .
The market report covers data from the U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.