Global Ai In Bioinformatics Market
市场规模(十亿美元)
CAGR :
%

![]() |
2023 –2030 |
![]() |
USD 2.53 Million |
![]() |
USD 3.20 Million |
![]() |
|
![]() |
|
全球生物資訊學人工智慧市場,按產品(軟體、服務、其他)、類型(機器學習、深度學習等)、產品和服務(知識管理工具、生物資訊學平台、生物資訊學組織應用(基因組學、微陣列、系統生物學、文本挖掘、化學資訊學和藥物設計、蛋白質組學、轉錄組學、DNA技術、生物技術等)、代謝物環境等植物學、產業趨勢和預測到 2030 年。
生物資訊人工智慧市場分析及規模
基因定序成本的降低增強了市場的需求。為了獲得更好的醫療服務而增加的醫療支出也是市場成長的原因。主要市場參與者高度關注這段關鍵時期的各種服務推出和服務批准。此外,對生物資訊學的需求不斷增長以及公共和私營部門對生物資訊學的資助不斷增加也促進了市場需求的成長。
由於市場參與者的增加和先進服務的可用性,生物資訊市場中的人工智慧在預測年份將會成長。同時,製造商正致力於研發活動,以在市場上推出新穎的服務。生物資訊技術的不斷進步進一步推動了市場的成長。然而,生物資訊學儀器的高成本和網路安全問題可能會在預測期內阻礙生物資訊學市場人工智慧的成長。
Data Bridge Market Research 分析稱,2022 年全球生物資訊學人工智慧市場價值為 253 萬美元,預計到 2030 年將達到 2.1738 億美元,在 2023-2030 年預測期內的複合年增長率為 42.7%。由於手持式人工智慧在生物資訊學中的商業化應用技術途徑的快速發展,「服務」佔據了生物資訊學人工智慧市場中最大的技術領域。除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、患者流行病學、管道分析、定價分析和監管框架。
報告範圍和市場細分
報告指標 |
細節 |
預測期 |
2023年至2030年 |
基準年 |
2022 |
歷史歲月 |
2021(可自訂為2015-2020) |
定量單位 |
收入(百萬美元),定價(美元) |
涵蓋的領域 |
按產品(軟體、服務、其他)、類型(機器學習、深度學習、其他)、產品和服務(知識管理工具、生物資訊學平台、生物資訊學服務)、應用(基因組學、微陣列、系統生物學、文本挖掘、化學資訊學和藥物設計、蛋白質組學、轉錄組學、DNA定序、生物代謝、其他生物技術部門(醫學生物技術)、 |
覆蓋國家 |
美國、加拿大、墨西哥。英國、德國、法國、西班牙、義大利、荷蘭、瑞士、俄羅斯、比利時、土耳其、歐洲其他地區、中國、韓國、日本、印度、澳洲、新加坡、馬來西亞、印尼、泰國、菲律賓、亞太其他地區、南非、沙烏地阿拉伯、阿聯酋、以色列、埃及、中東和非洲其他地區、巴西、阿根廷和南美洲其他地區 |
涵蓋的市場參與者 |
JADBio(美國)、Gnosis Data Analysis(以色列)、Fios Genomics(英國)、SOPHiA GENETICS(瑞士)、Biomax Informatics Inc.(美國)、DNASTAR(美國)、Ardigen(母公司 Selvita Group)(波蘭)、Source BioScience(英國)、QIAGEN(德國)、Neoita Group)(美國)、Source BioScience(英國)、QIAGEN(德國)、美國國家) Scientific(盧森堡)、Illumina, Inc.(美國)、Thermo Fisher Scientific, Inc.(美國)、Insilico Medicine(美國)、Strand Life Sciences(印度)、Dassault Systèmes(法國)、iNDX.Ai(美國)、Paige AI, Inc.(美國)、SomaLogic Operating Co. |
市場機會 |
|
市場定義
生物資訊學是一門與生物分子序列分析有關的分支學科。它通常指基因、DNA、RNA 或蛋白質,特別適用於比較基因和蛋白質中的其他序列以及生物體內或生物體之間的不同序列,研究生物體之間的進化關係,並利用 DNA 和蛋白質序列中存在的模式來確定它們的功能。
生物資訊學結合了電腦程式設計、大數據和分子生物學,使科學家能夠理解和識別生物數據中的模式。它在研究基因組和 DNA 定序方面特別有用,因為它允許科學家組織大量數據。
從遺傳學到毒理學到真菌學到放射生物學,生物學有許多分支學科可供研究。其中,生物資訊學是最令人感興趣的領域之一,它能夠讓你識別、評估、儲存和檢索生物資訊。作為一個跨學科的研究領域,它結合了電腦科學、統計學和生物學的各種應用,開發用於理解生物數據(如 DNA 測序、蛋白質分析、進化遺傳學等)的軟體應用程式。
在不久的將來,與藥物發現的生物資訊相關的重要決策將由那些不僅了解生物學,而且還能使用生物資訊學工具及其發布的知識來製定假設和確定品質目標的個人做出。
全球生物資訊人工智慧市場動態
驅動程式
- 對生物資訊學的需求不斷增長
隨著基因組學的關注,藥理學在各種慢性疾病(尤其是癌症)的治療中繼續發揮更大的作用,次世代定序(NGS)正在發展成為一種強有力的工具,可以更深入、更精確地了解單一腫瘤和特定受體的分子基礎。資訊學在生物學研究中至關重要,它涉及學習程式設計的生物學家,或學習生物學基礎知識的電腦程式設計師、數學家或資料庫管理員。
- 降低基因定序成本
降低基因組學和生物標記預測成本的強烈需求促進了高通量基因組定序的產生,通常被稱為下一代定序(NGS)。單一生物資訊循環中會同時產生數千或數百萬個序列。工業NGS技術的大幅升級最終導致每鹼基DNA定序成本的大幅降低。因此,目前主要的定序技術已成為研究的重點,樣本設計最佳化則處於次要地位。
- 增加公共和私營部門對生物資訊學的資助
為了改善生物資訊學的工作流程,聯邦機構、公共和私人機構正在提供資金以開展生物資訊學計畫並向科學家提供研究資金。重要的是向潛在的資助者提供明確的提案和策略,說明機構在生物資訊能力建構方面要實現的目標以及預期的產出和成果。全球許多政府機構和私人組織正在加大對生物資訊學領域的投資。這些投資在很大程度上促進了生物資訊服務的數據和技術進步,進而提高了這些服務的品質。
機會
- 主要參與者的策略性舉措
研究品質的大幅提高和研究機會的增加得益於主要市場參與者所採取的各種策略措施。多年來,他們採取了產品發布、合作、合併、收購等多項舉措,預計將引領並創造更多市場機會。
透過與新科技公司成功合作,確保產業持續成長、創造力和生存力,醫療保健產品供應商擁有巨大的機會。實施技術支援的技術的醫療企業將探索新的患者護理產品模式,簡化流程並更多地讓患者參與其中。
公司發現並開發先進的生物資訊學產品,這些公司正在啟動新的措施並與其他主要參與者合作,以提供更可靠的結果和服務。
- 生物資訊技術的進步
生物資訊平台和儀器的尺寸和成本正在降低,使得公共衛生實驗室更容易採用。儘管目前基於人工智慧的生物資訊學需要高度專業化的設備和大量熟練的人員來分析數據,但生物資訊革命不太可能已經結束。隨著技術的進步,儀器和技術也需要升級,此外,生物資訊市場在各種應用方面具有巨大的升級潛力,並且預測期內生物資訊學技術有很大的進步機會。
限制/挑戰
- 儀器成本高
設備的成本在市場上扮演著重要角色。基於人工智慧的生物資訊儀器高度複雜,需要高度驗證和其他規範,而這些要求日益增加。基因組學儀器還配備了先進的特性和功能,因此價格較高,介於 1,000 萬至 2,000 萬美元之間。由於製藥公司和研究實驗室需要許多這樣的系統,因此他們在採購多台基因組儀器上的資本支出非常高。對於中小型製藥公司和研究實驗室來說,對多台基因組學儀器進行如此高的投資是不可行的。因此,預計基於人工智慧的設備的高成本將抑制市場成長。
- 缺乏熟練的專業人員來執行基於人工智慧的生物資訊學技術
生物資訊學是生物學中發展最快的研究領域之一,它涉及開發和使用計算工具來收集、存檔、組織、分析和視覺化生物數據。技術的進步使得傳統的數據分析方法已經能夠達到下一代分析的水平。生物資訊技術的進步需要各種技能來處理。由於生物資訊平台是高度自動化且昂貴的機器,因此對此類機器的不當操作可能會損壞其零件,從而妨礙實現生物數據的分析和視覺化。從而會相應妨礙資料處理的結果。因此,缺乏具備足夠技能和知識進行下一代定序的熟練專業人員阻礙了市場的成長。
這份生物資訊學人工智慧市場報告提供了最新發展、貿易法規、進出口分析、生產分析、價值鏈優化、市場份額、國內和本地化市場參與者的影響的詳細信息,分析了新興收入來源、市場法規變化、戰略市場增長分析、市場規模、類別市場增長、應用領域和主導地位、產品批准、產品發布、地理擴展、市場技術創新等方面的機會。要獲取有關生物資訊學市場人工智慧的更多信息,請聯繫 Data Bridge Market Research 以獲取分析師簡報。我們的團隊將協助您做出明智的市場決策,以實現市場成長。
最新動態
- 2022 年 6 月,數據驅動醫療領域的領導者 SOPHiA GENETICS 在維也納舉行的 ESHG 會議上宣布,其基於雲端的 SOPHiA DDM™ 平台(診斷應用程式的附件)支援的分析功能已獲得 CE-IVD 認證。透過此認證,SOPHiA DDM™ 平台現已準備好進行 IVD 測試,以支援歐盟和其他認可此認證的市場中為診斷目的而設計的所有應用程式和模組。這有助於該公司提高在全球市場的影響力
- 2021年12月,JADBio與BioLizard宣佈建立合作關係。 BioLizard 是一家敏捷的生物資訊學和 AI/ML 公司,為全球生命科學、生物技術和製藥行業的客戶提供服務。 JADBio 是一個強大的自動化機器學習平台,它允許在生物醫學和多組學數據上直觀、及時和交互地創建 ML 預測模型,同時允許透過其廣泛的報告和分析來發現知識(生物標記特徵)。這有助於該公司擴大其在市場上的產品和服務組合。
全球生物資訊學人工智慧市場範圍
生物資訊學中的人工智慧市場根據產品、類型、產品和服務、應用和產業進行細分。這些細分市場之間的成長將幫助您分析行業中的主要成長細分市場,並為用戶提供有價值的市場概覽和市場洞察,幫助他們做出策略決策,確定核心市場應用。
奉獻
- 服務
- 軟體
- 其他的
類型
- 機器學習
- 深度學習
- 其他的
產品和服務
- 生物資訊服務
- 生物資訊平台
- 知識管理工具
應用
- 基因組學
- 化學資訊學與藥物設計
- 蛋白質體學
- DNA定序
- 系統生物學
- 轉錄組學
- 文字挖掘
- 微陣列
- 代謝組學
- 其他的
部門
- 醫學生物技術
- 動物生物技術
- 植物生物技術
- 環境生物技術
- 法醫生物技術
- 其他的
全球生物資訊學人工智慧分析/洞察
對生物資訊學中的人工智慧市場進行了分析,並按國家、產品、類型、產品和服務、應用和部門提供了市場規模洞察和趨勢,如上所述。
生物資訊學人工智慧市場報告涵蓋的國家包括北美的美國、加拿大、墨西哥、英國、德國、法國、西班牙、義大利、荷蘭、瑞士、俄羅斯、比利時、土耳其、歐洲的其他地區、中國、韓國、日本、印度、澳洲、新加坡、馬來西亞、印尼、泰國、菲律賓、亞太地區的其他亞太地區、中東和非洲的南非、沙烏地阿拉伯、阿聯酋、阿聯酋、埃及和其他地區的阿根廷地區的其他地區。
由於對先進技術和藥物開發與設計的需求不斷增長,北美預計將主導全球生物資訊人工智慧市場,加速了市場的成長。為了應對日益增長的需求,公司和市場參與者正在啟動各種策略,如產品發布、進步、收購協議等,預計這些策略將推動市場成長。
由於政府對醫療保健基礎設施和人工智慧研究的投資迅速增加,預計在 2023 年至 2030 年的預測期內,亞太地區的生物資訊市場人工智慧將顯著成長。
報告的國家部分還提供了影響市場當前和未來趨勢的個別市場影響因素和市場監管變化。下游和上游價值鏈分析、技術趨勢波特五力分析、案例研究等數據點是用來預測各國市場情景的一些指標。此外,在對國家數據進行預測分析時,還考慮了全球品牌的存在和可用性及其因來自本地和國內品牌的大量或稀缺的競爭而面臨的挑戰、國內關稅和貿易路線的影響。
生物資訊市場競爭格局及人工智慧市場佔有率分析
生物資訊市場競爭格局中的人工智慧提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與專注於生物資訊學市場人工智慧的公司有關。
生物資訊學人工智慧市場報告涵蓋的主要參與者有:
- JADBio(美國)
- Gnosis 資料分析(以色列)
- Fios Genomics(英國)
- 索菲亞遺傳學(瑞士)
- Biomax Informatics Inc.(美國)
- DNASTAR(美國)
- Ardigen(母公司 Selvita 集團)(波蘭)
- Source BioScience(英國)
- QIAGEN(德國)
- NeoGenomics Laboratories(美國)
- CelbridgeScience(美國)
- Eurofins Scientific(盧森堡)
- Illumina公司(美國)
- 賽默飛世爾科技公司(美國)
- Insilico Medicine(美國)
- Strand Life Sciences(印度)
- 達梭系統(法國)
- iNDX.Ai(美國)
- Paige AI, Inc.(美國)
- SomaLogic Operating Co., Inc.(美國)
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
目录
1. INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL AI IN BIOINFORMATICS MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2. MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL AI IN BIOINFORMATICS MARKET SIZE
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY POSITIONING GRID
2.2.5 COMPANY MARKET SHARE ANALYSIS
2.2.6 MULTIVARIATE MODELLING
2.2.7 TOP TO BOTTOM ANALYSIS
2.2.8 STANDARDS OF MEASUREMENT
2.2.9 VENDOR SHARE ANALYSIS
2.2.10 SALES VOLUME
2.2.11 EPIDEMIOLOGY MODELLING
2.2.12 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.13 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL AI IN BIOINFORMATICS MARKET : RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3. MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4. EXECUTIVE SUMMARY
5. PREMIUM INSIGHTS
5.1 PESTEL ANALYSIS
5.2 PORTER'S FIVE FORCES MODEL
6. INDUSTRY INSIGHTS
6.1 MICRO AND MACRO ECONOMIC FACTORS
6.2 PENETRATION AND GROWTH PROSPECT MAPPING
6.3 KEY PRICING STRATEGIES
6.4 INTERVIEWS WITH SPECIALIST
6.5 ANALYSIS AND RECOMMENDATIONS
7. INTELLECTUAL PROPERTY (IP) PORTFOLIO
7.1 PATENT QUALITY AND STRENGTH
7.2 PATENT FAMILIES
7.3 LICENSING AND COLLABORATIONS
7.4 COMPETITIVE LANDSCAPE
7.5 IP STRATEGY AND MANAGEMENT
7.6 OTHER
8. COST ANALYSIS BREAKDOWN
9. TECHNOLOGY ROADMAP
10. INNOVATION TRACKER AND STRATEGIC ANALYSIS
10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS
10.1.1 JOINT VENTURES
10.1.2 MERGERS AND ACQUISITIONS
10.1.3 LICENSING AND PARTNERSHIP
10.1.4 TECHNOLOGY COLLABORATIONS
10.1.5 STRATEGIC DIVESTMENTS
10.2 NUMBER OF PRODUCTS IN DEVELOPMENT
10.3 STAGE OF DEVELOPMENT
10.4 TIMELINES AND MILESTONES
10.5 INNOVATION STRATEGIES AND METHODOLOGIES
10.6 RISK ASSESSMENT AND MITIGATION
10.7 FUTURE OUTLOOK
11. REGULATORY COMPLIANCE
11.1 REGULATORY AUTHORITIES
11.2 REGULATORY CLASSIFICATIONS
11.2.1 CLASS I
11.2.2 CLASS II
11.2.3 CLASS III
11.3 REGULATORY SUBMISSIONS
11.4 INTERNATIONAL HARMONIZATION
11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS
11.6 REGULATORY CHALLENGES AND STRATEGIES
12. REIMBURSEMENT FRAMEWORK
13. OPPUTUNITY MAP ANALYSIS
14. INSTALLED BASE DATA
15. VALUE CHAIN ANALYSIS
16. HEALTHCARE ECONOMY
16.1 HEALTHCARE EXPENDITURE
16.2 CAPITAL EXPENDITURE
16.3 CAPEX TRENDS
16.4 CAPEX ALLOCATION
16.5 FUNDING SOURCES
16.6 INDUSTRY BENCHMARKS
16.7 GDP RATION IN OVERALL GDP
16.8 HEALTHCARE SYSTEM STRUCTURE
16.9 GOVERNMENT POLICIES
16.10 ECONOMIC DEVELOPMENT
17. GLOBAL AI IN BIOINFORMATICS MARKET, BY OFFERING
17.1 OVERVIEW
17.2 SOFTWARE
17.2.1 BY MODE
17.2.1.1. INTEGRATED
17.2.1.2. STANDALONE
17.2.2 BY DEPLOYMENT MODE
17.2.2.1. WEB-BASED
17.2.2.2. CLOUD-BASED
17.2.2.3. ON PREMISE
17.3 SERVICES
17.4 HARDWARE
18. GLOBAL AI IN BIOINFORMATICS MARKET , BY PRODUCT AND SERVICES
18.1 OVERVIEW
18.2 KNOWLEDGE MANAGEMENT TOOLS
18.2.1 GENERALISED KNOWLEDGE MANAGEMENT TOOLS
18.2.2 SPECIALISED KNOWLEDGE MANAGEMENT TOOLS
18.3 BIOINFORMATICS PLATFORMS
18.3.1 SEQUENCE ANALYSIS PLATFORMS
18.3.2 SEQUENCE ALIGNMENT PLATFORMS
18.3.3 SEQUENCE MANIPULATION PLATFORMS
18.3.4 STRUCTURAL ANALYSIS PLATFORMS
18.3.5 OTHERS
18.4 BIOINFORMATICS SERVICES
18.4.1 SEQUENCING SERVICES
18.4.2 DATABASE MANAGEMENT
18.4.3 DATA ANALYSIS
18.4.4 OTHERS
19. GLOBAL AI IN BIOINFORMATICS MARKET , BY TYPE
19.1 OVERVIEW
19.2 MACHINE LEARNING
19.2.1 SUPERVISED LEARNING
19.2.2 UNSUPERVISED LEARNING
19.3 DEEP LEARNING
19.4 NATURAL LANGUAGE PROCESSING (NLP)
19.5 NEURAL NETWORKS
19.6 OTHERS
20. GLOBAL AI IN BIOINFORMATICS MARKET , BY APPLICATION
20.1 OVERVIEW
20.2 GENOMICS
20.2.1 BY TYPE
20.2.1.1. SEQUENCE ANALYSIS
20.2.1.1.1. DNA
20.2.1.1.2. RNA
20.2.1.2. GENE EXPRESSION ANALYSIS AND CLUSTERING
20.2.1.3. VIRAL GENE-VARIANT REPORTING
20.2.1.4. OTHERS
20.2.2 BY OFFERING
20.2.2.1. SOFTWARE
20.2.2.1.1. BY MODE
20.2.2.1.1.1 INTEGRATED
20.2.2.1.1.2 STANDALONE
20.2.2.1.2. BY DEPLOYMENT MODE
20.2.2.1.2.1 WEB-BASED
20.2.2.1.2.2 CLOUD-BASED
20.2.2.1.2.3 ON PREMISE
20.2.2.2. SERVICES
20.2.2.3. HARDWARE
20.3 MICROARRAYS
20.3.1 SOFTWARE
20.3.1.1. BY MODE
20.3.1.1.1. INTEGRATED
20.3.1.1.2. STANDALONE
20.3.1.2. BY DEPLOYMENT MODE
20.3.1.2.1. WEB-BASED
20.3.1.2.2. CLOUD-BASED
20.3.1.2.3. ON PREMISE
20.3.2 SERVICES
20.3.3 HARDWARE
20.4 STRUCTURALBIOLOGY
20.4.1 SOFTWARE
20.4.1.1. BY MODE
20.4.1.1.1. INTEGRATED
20.4.1.1.2. STANDALONE
20.4.1.2. BY DEPLOYMENT MODE
20.4.1.2.1. WEB-BASED
20.4.1.2.2. CLOUD-BASED
20.4.1.2.3. ON PREMISE
20.4.2 SERVICES
20.4.3 HARDWARE
20.5 CHEMOINFORMATICS & DRUG DESIGN
20.5.1 BY PHASE
20.5.1.1. PRE-CLINICAL
20.5.1.2. HIV AND HEPATITIS C (HCV) PROTEASE CLEAVAGE PREDICTION
20.5.1.3. OTHERS
20.5.2 BY OFFERING
20.5.2.1. SOFTWARE
20.5.2.1.1. BY MODE
20.5.2.1.1.1 INTEGRATED
20.5.2.1.1.2 STANDALONE
20.5.2.1.2. BY DEPLOYMENT MODE
20.5.2.1.2.1 WEB-BASED
20.5.2.1.2.2 CLOUD-BASED
20.5.2.1.2.3 ON PREMISE
20.5.2.2. SERVICES
20.5.2.3. HARDWARE
20.6 PROTEOMICS
20.6.1 SOFTWARE
20.6.1.1. BY MODE
20.6.1.1.1. INTEGRATED
20.6.1.1.2. STANDALONE
20.6.1.2. BY DEPLOYMENT MODE
20.6.1.2.1. WEB-BASED
20.6.1.2.2. CLOUD-BASED
20.6.1.2.3. ON PREMISE
20.6.2 SERVICES
20.6.3 HARDWARE
20.7 TRANSCRIPTOMICS
20.7.1 SOFTWARE
20.7.1.1. BY MODE
20.7.1.1.1. INTEGRATED
20.7.1.1.2. STANDALONE
20.7.1.2. BY DEPLOYMENT MODE
20.7.1.2.1. WEB-BASED
20.7.1.2.2. CLOUD-BASED
20.7.1.2.3. ON PREMISE
20.7.2 SERVICES
20.7.3 HARDWARE
20.8 METABOLOMICS
20.8.1 SOFTWARE
20.8.1.1. BY MODE
20.8.1.1.1. INTEGRATED
20.8.1.1.2. STANDALONE
20.8.1.2. BY DEPLOYMENT MODE
20.8.1.2.1. WEB-BASED
20.8.1.2.2. CLOUD-BASED
20.8.1.2.3. ON PREMISE
20.8.2 SERVICES
20.8.3 HARDWARE
20.9 PRECISION MEDICINE
20.9.1 SOFTWARE
20.9.1.1. BY MODE
20.9.1.1.1. INTEGRATED
20.9.1.1.2. STANDALONE
20.9.1.2. BY DEPLOYMENT MODE
20.9.1.2.1. WEB-BASED
20.9.1.2.2. CLOUD-BASED
20.9.1.2.3. ON PREMISE
20.9.2 SERVICES
20.9.3 HARDWARE
20.10 MOLECULAR MODELING
20.10.1 SOFTWARE
20.10.1.1. BY MODE
20.10.1.1.1. INTEGRATED
20.10.1.1.2. STANDALONE
20.10.1.2. BY DEPLOYMENT MODE
20.10.1.2.1. WEB-BASED
20.10.1.2.2. CLOUD-BASED
20.10.1.2.3. ON PREMISE
20.10.2 SERVICES
20.10.3 HARDWARE
20.11 OTHERS
21. GLOBAL AI IN BIOINFORMATICS MARKET , BY SECTOR
21.1 OVERVIEW
21.2 MEDICAL BIOTECHNOLOGY
21.2.1 SOFTWARE
21.2.1.1. BY MODE
21.2.1.1.1. INTEGRATED
21.2.1.1.2. STANDALONE
21.2.1.2. BY DEPLOYMENT MODE
21.2.1.2.1. WEB-BASED
21.2.1.2.2. CLOUD-BASED
21.2.1.2.3. ON PREMISE
21.2.2 SERVICES
21.2.3 HARDWARE
21.3 ANIMAL BIOTECHNOLOGY
21.3.1 SOFTWARE
21.3.1.1. BY MODE
21.3.1.1.1. INTEGRATED
21.3.1.1.2. STANDALONE
21.3.1.2. BY DEPLOYMENT MODE
21.3.1.2.1. WEB-BASED
21.3.1.2.2. CLOUD-BASED
21.3.1.2.3. ON PREMISE
21.3.2 SERVICES
21.3.3 HARDWARE
21.4 PLANT BIOTECHNOLOGY
21.4.1 SOFTWARE
21.4.1.1. BY MODE
21.4.1.1.1. INTEGRATED
21.4.1.1.2. STANDALONE
21.4.1.2. BY DEPLOYMENT MODE
21.4.1.2.1. WEB-BASED
21.4.1.2.2. CLOUD-BASED
21.4.1.2.3. ON PREMISE
21.4.2 SERVICES
21.4.3 HARDWARE
21.5 ENVIRONMENTAL BIOTECHNOLOGY
21.5.1 SOFTWARE
21.5.1.1. BY MODE
21.5.1.1.1. INTEGRATED
21.5.1.1.2. STANDALONE
21.5.1.2. BY DEPLOYMENT MODE
21.5.1.2.1. WEB-BASED
21.5.1.2.2. CLOUD-BASED
21.5.1.2.3. ON PREMISE
21.5.2 SERVICES
21.5.3 HARDWARE
21.6 FORENSIC BIOTECHNOLOGY
21.6.1 SOFTWARE
21.6.1.1. BY MODE
21.6.1.1.1. INTEGRATED
21.6.1.1.2. STANDALONE
21.6.1.2. BY DEPLOYMENT MODE
21.6.1.2.1. WEB-BASED
21.6.1.2.2. CLOUD-BASED
21.6.1.2.3. ON PREMISE
21.6.2 SERVICES
21.6.3 HARDWARE
21.7 OTHERS
22. GLOBAL AI IN BIOINFORMATICS MARKET , BY END USER
22.1 OVERVIEW
22.2 PHARMA AND BIOPHARMA COMPANIES
22.2.1 SOFTWARE
22.2.1.1. BY MODE
22.2.1.1.1. INTEGRATED
22.2.1.1.2. STANDALONE
22.2.1.2. BY DEPLOYMENT MODE
22.2.1.2.1. WEB-BASED
22.2.1.2.2. CLOUD-BASED
22.2.1.2.3. ON PREMISE
22.2.2 SERVICES
22.2.3 HARDWARE
22.3 BIOTECH COMPANIES
22.3.1 SOFTWARE
22.3.1.1. BY MODE
22.3.1.1.1. INTEGRATED
22.3.1.1.2. STANDALONE
22.3.1.2. BY DEPLOYMENT MODE
22.3.1.2.1. WEB-BASED
22.3.1.2.2. CLOUD-BASED
22.3.1.2.3. ON PREMISE
22.3.2 SERVICES
22.3.3 HARDWARE
22.4 GOVERNMENT AGENCIES
22.4.1 SOFTWARE
22.4.1.1. BY MODE
22.4.1.1.1. INTEGRATED
22.4.1.1.2. STANDALONE
22.4.1.2. BY DEPLOYMENT MODE
22.4.1.2.1. WEB-BASED
22.4.1.2.2. CLOUD-BASED
22.4.1.2.3. ON PREMISE
22.4.2 SERVICES
22.4.3 HARDWARE
22.5 LABORATORIES
22.5.1 SOFTWARE
22.5.1.1. BY MODE
22.5.1.1.1. INTEGRATED
22.5.1.1.2. STANDALONE
22.5.1.2. BY DEPLOYMENT MODE
22.5.1.2.1. WEB-BASED
22.5.1.2.2. CLOUD-BASED
22.5.1.2.3. ON PREMISE
22.5.2 SERVICES
22.5.3 HARDWARE
22.6 RESEARCH AND ACADEMIC INSTITUTES
22.6.1 SOFTWARE
22.6.1.1. BY MODE
22.6.1.1.1. INTEGRATED
22.6.1.1.2. STANDALONE
22.6.1.2. BY DEPLOYMENT MODE
22.6.1.2.1. WEB-BASED
22.6.1.2.2. CLOUD-BASED
22.6.1.2.3. ON PREMISE
22.6.2 SERVICES
22.6.3 HARDWARE
22.7 OTHERS
23. GLOBAL AI IN BIOINFORMATICS MARKET , BY REGION
GLOBAL AI IN BIOINFORMATICS MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
23.1 NORTH AMERICA
23.1.1 U.S.
23.1.2 CANADA
23.1.3 MEXICO
23.2 EUROPE
23.2.1 GERMANY
23.2.2 FRANCE
23.2.3 U.K.
23.2.4 HUNGARY
23.2.5 LITHUANIA
23.2.6 AUSTRIA
23.2.7 IRELAND
23.2.8 NORWAY
23.2.9 POLAND
23.2.10 ITALY
23.2.11 SPAIN
23.2.12 RUSSIA
23.2.13 TURKEY
23.2.14 NETHERLANDS
23.2.15 SWITZERLAND
23.2.16 REST OF EUROPE
23.3 ASIA-PACIFIC
23.3.1 JAPAN
23.3.2 CHINA
23.3.3 SOUTH KOREA
23.3.4 INDIA
23.3.5 SINGAPORE
23.3.6 THAILAND
23.3.7 INDONESIA
23.3.8 MALAYSIA
23.3.9 PHILIPPINE
23.3.10 AUSTRALIA
23.3.11 NEW ZEALAND
23.3.12 VIETNAM
23.3.13 TAIWAN
23.3.14 REST OF ASIA-PACIFIC
23.4 SOUTH AMERICA
23.4.1 BRAZIL
23.4.2 ARGENTINA
23.4.3 REST OF SOUTH AMERICA
23.5 MIDDLE EAST AND AFRICA
23.5.1 SOUTH AFRICA
23.5.2 SAUDI ARABIA
23.5.3 UAE
23.5.4 EGYPT
23.5.5 KUWAIT
23.5.6 ISRAEL
23.5.7 REST OF MIDDLE EAST AND AFRICA
23.6 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
24. GLOBAL AI IN BIOINFORMATICS MARKET , SWOT AND DBMR ANALYSIS
25. GLOBAL AI IN BIOINFORMATICS MARKET , COMPANY LANDSCAPE
25.1 COMPANY SHARE ANALYSIS: GLOBAL
25.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
25.3 COMPANY SHARE ANALYSIS: EUROPE
25.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
25.5 MERGERS & ACQUISITIONS
25.6 NEW PRODUCT DEVELOPMENT & APPROVALS
25.7 EXPANSIONS
25.8 REGULATORY CHANGES
25.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
26. GLOBAL AI IN BIOINFORMATICS MARKET , COMPANY PROFILE
26.1 ILLUMINA, INC
26.1.1 COMPANY OVERVIEW
26.1.2 GEOGRAPHIC PRESENCE
26.1.3 REVENUE ANALYSIS
26.1.4 PRODUCT PORTFOLIO
26.1.5 RECENT DEVELOPEMENTS
26.2 DASSAULT SYSTÈMES
26.2.1 COMPANY OVERVIEW
26.2.2 GEOGRAPHIC PRESENCE
26.2.3 REVENUE ANALYSIS
26.2.4 PRODUCT PORTFOLIO
26.2.5 RECENT DEVELOPEMENTS
26.3 AGILENT TECHNOLOGIES, INC + NVIDIA + AWS
26.3.1 COMPANY OVERVIEW
26.3.2 GEOGRAPHIC PRESENCE
26.3.3 REVENUE ANALYSIS
26.3.4 PRODUCT PORTFOLIO
26.3.5 RECENT DEVELOPEMENTS
26.4 QIAGEN
26.4.1 COMPANY OVERVIEW
26.4.2 GEOGRAPHIC PRESENCE
26.4.3 REVENUE ANALYSIS
26.4.4 PRODUCT PORTFOLIO
26.4.5 RECENT DEVELOPEMENTS
26.5 GNOSIS DATA ANALYSIS
26.5.1 COMPANY OVERVIEW
26.5.2 GEOGRAPHIC PRESENCE
26.5.3 REVENUE ANALYSIS
26.5.4 PRODUCT PORTFOLIO
26.5.5 RECENT DEVELOPEMENTS
26.6 FIOS GENOMICS
26.6.1 COMPANY OVERVIEW
26.6.2 GEOGRAPHIC PRESENCE
26.6.3 REVENUE ANALYSIS
26.6.4 PRODUCT PORTFOLIO
26.6.5 RECENT DEVELOPEMENTS
26.7 JADBIO – GNOSIS DA S.A.
26.7.1 COMPANY OVERVIEW
26.7.2 GEOGRAPHIC PRESENCE
26.7.3 REVENUE ANALYSIS
26.7.4 PRODUCT PORTFOLIO
26.7.5 RECENT DEVELOPEMENTS
26.8 DNASTAR
26.8.1 COMPANY OVERVIEW
26.8.2 GEOGRAPHIC PRESENCE
26.8.3 REVENUE ANALYSIS
26.8.4 PRODUCT PORTFOLIO
26.8.5 RECENT DEVELOPEMENTS
26.9 SOPHIA GENETICS
26.9.1 COMPANY OVERVIEW
26.9.2 GEOGRAPHIC PRESENCE
26.9.3 REVENUE ANALYSIS
26.9.4 PRODUCT PORTFOLIO
26.9.5 RECENT DEVELOPEMENTS
26.10 BIOMAX INFORMATICS AG + MOLECULAR NETWORKS GMBH
26.10.1 COMPANY OVERVIEW
26.10.2 GEOGRAPHIC PRESENCE
26.10.3 REVENUE ANALYSIS
26.10.4 PRODUCT PORTFOLIO
26.10.5 RECENT DEVELOPEMENTS
26.11 ARDIGEN
26.11.1 COMPANY OVERVIEW
26.11.2 GEOGRAPHIC PRESENCE
26.11.3 REVENUE ANALYSIS
26.11.4 PRODUCT PORTFOLIO
26.11.5 RECENT DEVELOPEMENTS
26.12 SOURCE GENOMICS
26.12.1 COMPANY OVERVIEW
26.12.2 GEOGRAPHIC PRESENCE
26.12.3 REVENUE ANALYSIS
26.12.4 PRODUCT PORTFOLIO
26.12.5 RECENT DEVELOPEMENTS
26.13 EUROFINS SCIENTIFIC
26.13.1 COMPANY OVERVIEW
26.13.2 GEOGRAPHIC PRESENCE
26.13.3 REVENUE ANALYSIS
26.13.4 PRODUCT PORTFOLIO
26.13.5 RECENT DEVELOPEMENTS
26.14 INSILICO MEDICINE
26.14.1 COMPANY OVERVIEW
26.14.2 GEOGRAPHIC PRESENCE
26.14.3 REVENUE ANALYSIS
26.14.4 PRODUCT PORTFOLIO
26.14.5 RECENT DEVELOPEMENTS
26.15 NEOGENOMICS LABORATORIES
26.15.1 COMPANY OVERVIEW
26.15.2 GEOGRAPHIC PRESENCE
26.15.3 REVENUE ANALYSIS
26.15.4 PRODUCT PORTFOLIO
26.15.5 RECENT DEVELOPEMENTS
26.16 GENEDATA AG
26.16.1 COMPANY OVERVIEW
26.16.2 GEOGRAPHIC PRESENCE
26.16.3 REVENUE ANALYSIS
26.16.4 PRODUCT PORTFOLIO
26.16.5 RECENT DEVELOPEMENTS
26.17 PLISADE BIO. + STRAND LIFE SCIENCES
26.17.1 COMPANY OVERVIEW
26.17.2 GEOGRAPHIC PRESENCE
26.17.3 REVENUE ANALYSIS
26.17.4 PRODUCT PORTFOLIO
26.17.5 RECENT DEVELOPEMENTS
26.18 INDX.AI.
26.18.1 COMPANY OVERVIEW
26.18.2 GEOGRAPHIC PRESENCE
26.18.3 REVENUE ANALYSIS
26.18.4 PRODUCT PORTFOLIO
26.18.5 RECENT DEVELOPEMENTS
26.19 PAIGE AI, INC.
26.19.1 COMPANY OVERVIEW
26.19.2 GEOGRAPHIC PRESENCE
26.19.3 REVENUE ANALYSIS
26.19.4 PRODUCT PORTFOLIO
26.19.5 RECENT DEVELOPEMENTS
26.20 OWKIN
26.20.1 COMPANY OVERVIEW
26.20.2 GEOGRAPHIC PRESENCE
26.20.3 REVENUE ANALYSIS
26.20.4 PRODUCT PORTFOLIO
26.20.5 RECENT DEVELOPEMENTS
26.21 INSITRO
26.21.1 COMPANY OVERVIEW
26.21.2 GEOGRAPHIC PRESENCE
26.21.3 REVENUE ANALYSIS
26.21.4 PRODUCT PORTFOLIO
26.21.5 RECENT DEVELOPEMENTS
26.22 SHANGHAI ARTIFICIAL INTELLIGENCE LABORATORY
26.22.1 COMPANY OVERVIEW
26.22.2 GEOGRAPHIC PRESENCE
26.22.3 REVENUE ANALYSIS
26.22.4 PRODUCT PORTFOLIO
26.22.5 RECENT DEVELOPEMENTS
26.23 IONLACE
26.23.1 COMPANY OVERVIEW
26.23.2 GEOGRAPHIC PRESENCE
26.23.3 REVENUE ANALYSIS
26.23.4 PRODUCT PORTFOLIO
26.23.5 RECENT DEVELOPEMENTS
26.24 TAMARIND BIO
26.24.1 COMPANY OVERVIEW
26.24.2 GEOGRAPHIC PRESENCE
26.24.3 REVENUE ANALYSIS
26.24.4 PRODUCT PORTFOLIO
26.24.5 RECENT DEVELOPEMENTS
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
27. RELATED REPORTS
28. QUESTIONNAIRE
29. CONCLUSION
30. DATA BRIDGE MARKET RESEARCH

研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。