全球运营预测性维护市场 - 行业趋势和 2029 年预测

请求目录 请求目录 与分析师交谈 与分析师交谈 立即购买 立即购买 购买前请咨询 提前咨询 免费样本报告 免费样本报告

全球运营预测性维护市场 - 行业趋势和 2029 年预测

  • ICT
  • Upcoming Report
  • Dec 2021
  • Global
  • 350 页面
  • 桌子數: 220
  • 图号: 60

>全球运营预测性维护市场,按组件类型(软件和服务)、部署模型(本地和云)、技术(机器学习、深度学习和大数据与分析)、垂直行业(银行、金融服务与保险、IT 与电信、旅游与交通、制造、零售、政府、建筑、化学品、食品饮料等)、组织规模(大型企业和中小型企业)、国家(美国、加拿大、墨西哥、巴西、阿根廷、南美洲其他地区、德国、意大利、英国、法国、西班牙、荷兰、比利时、瑞士、土耳其、俄罗斯、欧洲其他地区、日本、中国、印度、韩国、澳大利亚、新加坡、马来西亚、泰国、印度尼西亚、菲律宾、亚太其他地区、沙特阿拉伯、阿联酋、南非、埃及、以色列、中东和非洲其他地区)行业趋势和预测到 2029 年

运营预测性维护市场

市场分析和见解:全球运营预测性维护市场

预计在 2022 年至 2029 年的预测期内,运营预测性维护市场将以 26.53% 的速度增长,到 2029 年预计将达到 278.9913 亿美元。Data Bridge Market Research 关于运营预测性维护市场的报告提供了有关预计在整个预测期内普遍存在的各种因素的分析和见解,同时提供了它们对市场增长的影响。中小企业 (SME) 需求的增长正在加速运营预测性维护市场的增长。

众所周知,运营预测维护软件可以实时检索各种数据源,以预测质量问题或资产损失。这些技术的应用将使公司更容易避免停机并降低维护成本。运营预测分析系统可以识别故障趋势以及确定故障风险最高的属性和操作流程中的小漏洞。

预计在预测期内推动运营预测性维护市场增长的主要因素是转变维护运营和减少资产停机时间的需求增加。此外,对大数据和物联网 (IoT) 等先进概念的依赖性增加预计将进一步推动运营预测性维护市场的增长。此外,组织对削减运营成本的日益关注预计将进一步缓解运营预测性维护市场的增长。另一方面,运营商培训的缺乏预计将进一步阻碍运营预测性维护市场在时间线期间的增长。

  • 此外,实时蒸汽分析需求的增加将为未来几年运营预测性维护市场的增长提供潜在机会。然而,对预测性维护技术的信任度缺乏可能会在不久的将来进一步挑战运营预测性维护市场的增长。

本运营预测性维护市场报告详细介绍了最新发展、贸易法规、进出口分析、生产分析、价值链优化、市场份额、国内和本地市场参与者的影响,分析了新兴收入领域的机会、市场法规的变化、战略市场增长分析、市场规模、类别市场增长、应用领域和主导地位、产品批准、产品发布、地域扩展、市场技术创新。要获取有关运营预测性维护市场的更多信息,请联系 Data Bridge Market Research 获取分析师简报。我们的团队将帮助您做出明智的市场决策,以实现市场增长。

全球运营预测性维护市场范围和市场规模

运营预测性维护市场根据组件类型、部署模型、技术、行业垂直度和组织规模进行细分。细分市场之间的增长有助于您分析利基增长领域和进入市场的策略,并确定您的核心应用领域和目标市场的差异。    

  • 根据组件类型,运营预测性维护市场细分为软件和服务。服务进一步细分为咨询、集成和实施、培训和支持。
  • 根据部署模型,运营预测性维护市场细分为本地和云端。
  • 根据技术,运营预测性维护市场细分为机器学习、深度学习和大数据与分析。
  • 根据行业垂直领域,运营预测性维护市场细分为银行、金融服务和保险、IT 和电信、旅游和运输、制造、零售、政府、建筑、化学品、食品和饮料等。
  • 根据组织规模,运营预测性维护市场细分为大型企业和中小型企业。

运营预测性维护 市场国家级分析

对运营预测性维护市场进行了分析,并按国家、组件类型、部署模型、技术、行业垂直和组织规模提供了市场规模和数量信息,如上所述。    

运营预测性维护市场报告涵盖的国家包括北美洲的美国、加拿大和墨西哥,南美洲的巴西、阿根廷和南美洲其他地区,欧洲的德国、意大利、英国、法国、西班牙、荷兰、比利时、瑞士、土耳其、俄罗斯、欧洲其他地区,亚太地区 (APAC) 的其他地区,亚太地区 (APAC) 的沙特阿拉伯、阿联酋、南非、埃及、以色列,中东和非洲 (MEA) 的其他地区。

由于多个终端用户行业对先进技术的需求不断增长,北美在运营预测性维护市场中占据主导地位。此外,预测期内,BYOD 普及率的提高和智能手机采用率的提高将进一步推动该地区运营预测性维护市场的增长。由于互联网普及率的提高,预计亚太地区的运营预测性维护市场将大幅增长。此外,预计未来几年多个国家的数字化将进一步推动该地区运营预测性维护市场的增长。

报告的国家部分还提供了影响单个市场影响因素和国内市场监管变化,这些因素和变化会影响市场的当前和未来趋势。下游和上游价值链分析、技术趋势和波特五力分析、案例研究等数据点是用于预测单个国家市场情景的一些指标。此外,在提供国家数据的预测分析时,还考虑了全球品牌的存在和可用性以及它们因来自本地和国内品牌的大量或稀缺竞争而面临的挑战、国内关税的影响和贸易路线。   

竞争格局和运营预测性维护 市场份额分析

运营预测性维护市场竞争格局提供了竞争对手的详细信息。详细信息包括公司概况、公司财务状况、产生的收入、市场潜力、研发投资、新市场计划、区域存在、公司优势和劣势、产品发布、产品宽度和广度、应用主导地位。以上提供的数据点仅与公司对运营预测性维护市场的关注有关。

运营预测性维护市场的一些主要参与者包括 IBM、Software AG、SAS Institute Inc.、PTC Inc.、施耐德电气、罗克韦尔自动化、Fluke Corporation 的 eMaint、罗伯特·博世有限公司、SAP SE、通用电气公司、 AB SKF、日立有限公司、TIBCO Software Inc、Uptake Technologies Inc.、Asystom、Ecolibrium、OPEX GROUP、Google、LLC、Amazon Web Services、Inc. 和 Seebo Interactive LTD 等。


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

研究方法

Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.

The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.

可定制

Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.

Frequently Asked Questions

The Operational Predictive Maintenance Market size will be worth USD 27899.13 million by 2029.
The Operational Predictive Maintenance Market growth rate will be 26.53% by 2029.
The increase in the need for transforming maintenance operations and reducing asset downtime are the growth drivers of the Operational Predictive Maintenance Market.
The components type, deployment model, technology, industry vertical, and organisation size are the factors on which the Operational Predictive Maintenance Market research is based.
The major companies in the Operational Predictive Maintenance Market are IBM, Software AG, SAS Institute Inc., PTC Inc., Schneider Electric, Rockwell Automation, eMaint by Fluke Corporation, Robert Bosch GmbH, SAP SE, General Electric Company, AB SKF, Hitachi Ltd., TIBCO Software Inc, Uptake Technologies Inc., Asystom, Ecolibrium, OPEX GROUP, Google, LLC, Amazon Web Services, Inc. and Seebo Interactive LTD.