Global Healthcare Generative Ai Market
市场规模(十亿美元)
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 4.07 Billion |
![]() |
USD 27.39 Billion |
![]() |
|
![]() |
|
全球醫療保健生成人工智慧市場細分,按產品(硬體、軟體和服務)、技術(機器學習和自然語言處理)、應用(患者數據和風險分析、醫學成像和診斷、精準醫療、藥物發現、生活方式管理和遠程患者監控、虛擬助理、可穿戴設備、住院護理和醫院管理、研究、急診室和手術2032 年
醫療保健生成人工智慧市場規模
- 2024 年全球醫療生成 AI 市場規模為40.7 億美元 ,預計 到 2032 年將達到 273.9 億美元,預測期內 複合年增長率為 26.90%。
- 市場成長主要得益於人工智慧驅動工具在臨床診斷、藥物研發和個人化醫療領域的日益整合,從而提高了整個醫療工作流程的效率和創新
- 此外,對智慧自動化、經濟高效的解決方案以及更好的患者治療效果的需求不斷增長,使得生成式人工智慧成為醫療保健服務領域的一股變革力量。這些因素的融合正在加速其應用,從而顯著推動該行業的成長。
醫療保健生成人工智慧市場分析
- 醫療保健領域的生成式人工智慧利用先進的演算法生成醫療內容、支持臨床決策並加速藥物開發,正成為精準醫療和臨床及行政環境中營運效率的關鍵推動因素
- 醫療生成 AI 需求的不斷增長主要源於醫療數據量的不斷增長、對 AI 驅動的研究和診斷的投資不斷增加,以及在降低成本和臨床醫生工作量的同時增強患者護理的需求
- 北美在醫療保健生成 AI 市場佔據主導地位,2024 年其收入份額最高,為 42.3%,這得益於強大的數位基礎設施、高額的研發支出以及醫療保健系統中早期採用 AI 平台,尤其是在美國,臨床決策支援和藥物發現應用正在快速部署
- 在政府主導的數位健康計劃、醫療 IT 投資的增加以及科技公司和醫療機構之間日益加強的合作的支持下,亞太地區預計將在預測期內成為醫療生成 AI 市場增長最快的地區
- 軟體領域在醫療生成 AI 市場佔據主導地位,2024 年的市場份額為 61.8%,這得益於診斷、成像和患者參與應用中對生成模型和 AI 平台的高需求
報告範圍和醫療保健生成人工智慧市場細分
屬性 |
醫療保健產生人工智慧關鍵市場洞察 |
涵蓋的領域 |
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
主要市場參與者 |
|
市場機會 |
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
醫療保健產生人工智慧市場趨勢
“透過人工智慧洞察實現臨床工作流程的轉型”
- 全球醫療生成式人工智慧市場的一個主要且加速發展的趨勢是將先進的人工智慧模型(例如大型語言模型 (LLM) 和多模態人工智慧)整合到醫療服務系統中。這種整合正在透過自動化文件、增強診斷能力以及實現即時數據驅動的決策來徹底改變臨床工作流程。
- 例如,微軟的 Nuance DAX(Dragon Ambient eXperience)利用生成式人工智慧自動記錄醫病互動,顯著減輕了醫療專業人員的行政負擔。同樣,Google DeepMind 的 Med-PaLM 也正在進行測試,以支援臨床問答,並提高準確性和上下文理解能力。
- 生成式人工智慧使醫療保健系統能夠分析大量非結構化資料(例如病史、影像、實驗室結果和基因組資料),並以前所未有的效率產生洞察、摘要或治療建議。人工智慧生成的工具越來越多地用於個人化護理建議和研究文件生成。
- 生成式人工智慧與臨床平台、電子健康記錄 (EHR) 和遠距醫療工具的無縫集成,使醫療服務提供者能夠在單一介面內管理診斷、文件和患者溝通。這創造了一個精簡、有凝聚力且智慧的醫療保健環境。
- 這種智慧自動化和即時決策支援的趨勢正在從根本上重塑臨床預期和管理營運。因此,NVIDIA、AWS 和 IBM 等領先的科技公司正在開發安全、可擴展的醫療保健專用 AI 模型,而新創公司則在診斷和治療領域不斷創新。
- 對臨床效率、個人化治療和減少醫生倦怠的需求日益增長,正在迅速加速醫院、製藥公司、付款人和研究機構對生成式人工智慧的採用
醫療保健產生人工智慧市場動態
司機
“診斷、藥物開發和虛擬護理領域人工智慧整合激增”
- 對先進醫療解決方案的需求不斷增長,加上數位轉型的不斷推進和成本優化的需求,極大地推動了醫療領域對生成式人工智慧的採用
- 例如,2024 年 2 月,NVIDIA 和安進宣佈建立合作夥伴關係,整合生成式 AI,以加速藥物發現過程,實現更快的模擬和目標識別,展示 AI 如何重塑製藥研發
- 生成式人工智慧在臨床決策支援、病患分診、放射學、心理健康評估和文件自動化方面的廣泛應用,正在提高營運效率和病患治療效果
- 虛擬護理平台和人工智慧聊天機器人在遠端患者互動方面的日益依賴,強化了生成式人工智慧在現代醫療保健中的作用。此外,人工智慧驅動的系統正在實現預測分析和即時風險分析,以協助醫生和醫療保健管理人員。
- 北美和歐洲等地區的政府和醫療機構也在大力投資人工智慧創新,並得到有利的法規和公私合作的支持,進一步加速了市場的成長
克制/挑戰
“道德、監管和數據隱私挑戰”
- 儘管潛力不斷增長,但醫療生成人工智慧市場仍面臨著與資料隱私、演算法透明度和道德使用相關的巨大挑戰,這可能會阻礙其廣泛採用
- 例如,對美國《健康保險流通與責任法》(HIPAA)和歐盟《一般資料保護規範》(GDPR)等法規合規性的擔憂,尤其是在病患資料使用和人工智慧決策方面,仍然是一個主要障礙。醫療服務提供者對於部署未經明確臨床驗證或監管的人工智慧系統持謹慎態度。
- 人們對人工智慧輸出的偏見、模型決策缺乏可解釋性以及潛在的誤診的擔憂日益加劇,促使人們呼籲制定更強有力的指導方針和人機互動框架,以確保安全實施
- 此外,開發和訓練複雜的生成式人工智慧模型的成本高昂,加上醫療專業人員的技術專長有限,可能會限制中小型組織和發展中經濟體的採用
- 透過加強監管框架、安全的人工智慧基礎設施、對勞動力培訓的投資以及透明的人工智慧實踐來克服這些挑戰,對於確保醫療生成人工智慧解決方案的長期成長和信任至關重要
醫療保健生成人工智慧市場範圍
市場根據產品、技術、應用和最終用戶進行細分。
- 透過提供
根據產品類型,醫療生成式人工智慧市場可細分為硬體、軟體和服務。軟體領域佔據市場主導地位,2024 年收入份額最高,達到 61.8%,這得益於人工智慧模型和平台在臨床決策支援、醫療文件、診斷和藥物研發等應用領域的日益普及。醫療保健提供者和製藥公司正越來越多地投資人工智慧軟體解決方案,因為它們具有可擴展性、靈活性以及快速處理跨多種模式複雜資料的能力。
由於對人工智慧整合支援、客製化、諮詢和人工智慧系統持續培訓的需求日益增長,預計服務領域將在2025年至2031年期間實現最快成長。託管服務需求的成長,尤其是在缺乏內部人工智慧專業知識的醫院和研究機構,正在推動該領域的成長。
- 依技術
根據技術,醫療生成式人工智慧市場細分為機器學習和自然語言處理 (NLP)。機器學習領域在 2024 年佔據了最大的市場收入份額,達到 57.8%,這得益於其在預測分析、診斷和治療計劃方面的廣泛應用。機器學習演算法能夠從海量醫療資料集中進行精準的模式識別,從而顯著提高診斷精度和臨床療效。
預計到2031年,自然語言處理領域將以顯著的速度成長,這得益於醫療轉錄、電子病歷文件和人工智慧聊天機器人等領域的部署不斷增加。 NLP能夠從非結構化文字資料中提取有意義的洞察,幫助實現管理任務的自動化,並即時支援臨床決策。
- 按應用
根據應用領域,醫療生成式人工智慧市場細分為病患資料與風險分析、醫學影像與診斷、精準醫療、藥物研發、生活方式管理與遠端病患監控、虛擬助理、穿戴式裝置、住院護理與醫院管理、科學研究、急診室與外科手術、心理健康、醫療援助以及機器人與網路安全。醫學影像與診斷領域在2024年佔據市場主導地位,市場份額最高,達22.6%,這歸因於人工智慧在增強放射學和病理學影像解讀、識別異常和減少人為錯誤方面的應用日益增多。生成模型正在提升影像重建、分割和早期檢測能力,從而幫助患者做出更明智的臨床決策。
預計在2025年至2031年期間,藥物研發領域將經歷最快的成長,這得益於製藥和生技公司不斷成長的研發投入。生成式人工智慧能夠快速模擬和產生分子結構,從而縮短藥物開發生命週期的時間和成本,並支持精準醫療計畫。
- 按最終用戶
根據最終用戶,醫療生成式人工智慧市場細分為醫院、醫療支付方、製藥和生物技術公司、患者和其他。醫院細分市場在2024年佔據了最大的收入份額,達到45.4%,這得益於人工智慧工具在診斷、臨床決策支援、工作流程自動化和行政管理領域的日益普及。醫院在採用生成式人工智慧方面處於領先地位,因為它在減輕臨床醫生工作量和改善患者治療效果方面具有直接優勢。
預計在預測期內,製藥和生物技術公司板塊將以最快的速度成長,這得益於人工智慧驅動的藥物發現項目、生物標記識別和預測模型的激增。生成式人工智慧正越來越多地被整合到研究流程中,以提高臨床試驗的效率並加速產品開發。
醫療保健生成人工智慧市場區域分析
- 北美在醫療保健生成 AI 市場佔據主導地位,2024 年其收入份額最高,為 42.3%,這得益於強大的數位基礎設施、高額的研發支出以及醫療保健系統中早期採用 AI 平台,尤其是在美國,臨床決策支援和藥物發現應用正在快速部署
- 該地區的醫療保健提供者優先考慮用於臨床決策支援、診斷和工作流程自動化的先進人工智慧解決方案,受益於大量醫療數據集的可用性以及生成人工智慧與電子健康記錄和虛擬護理平台的集成
- 高額的醫療支出、強大的研發生態系統以及科技公司和醫療機構之間的策略合作進一步支持了這一廣泛實施,使北美成為醫療領域生成式人工智慧應用的全球領導者
美國醫療保健生成人工智慧市場洞察
2024年,美國醫療保健生成式人工智慧市場佔據北美地區79.5%的最高收入份額,這得益於醫院、臨床研究中心和製藥公司快速的數位轉型。美國強大的人工智慧基礎設施、廣泛的電子健康記錄 (EHR) 使用以及對數位醫療創新的強力監管支持,正在推動這一增長。對人工智慧驅動的診斷、臨床決策支援和藥物開發平台的投資不斷增加,以及醫療保健提供者與科技公司之間的策略合作,正在加速生成式人工智慧在臨床和行政管理領域的應用和整合。
歐洲醫療保健產生人工智慧市場洞察
預計歐洲醫療保健生成型人工智慧市場在整個預測期內將以可觀的複合年增長率增長,這得益於對人工智慧醫療解決方案日益增長的需求、先進的研究生態系統以及強調數據安全和患者安全的嚴格監管框架。生成型人工智慧在精準醫療、病患參與和行政自動化領域的應用日益廣泛,在醫院和研究機構中也日益受到關注。歐盟支持生命科學領域人工智慧創新的舉措,加上日益壯大的公私合作夥伴關係,正在進一步推動西歐和中歐市場的擴張。
英國醫療保健生成人工智慧市場洞察
預計英國醫療保健生成型人工智慧市場在預測期內將以顯著的複合年增長率增長,這得益於英國國家醫療服務體系 (NHS) 的持續現代化建設以及透過人工智慧創新改善患者護理的努力。英國積極的監管立場、支持性資助計畫以及人工智慧在診斷和臨床文件領域的日益普及,是推動該市場成長的關鍵因素。此外,醫療服務提供者和科技新創公司正積極將生成型人工智慧應用於醫療轉錄、患者分診和心理健康支援工具。
德國醫療保健生成人工智慧市場洞察
預計在預測期內,德國醫療保健生成式人工智慧市場將以可觀的複合年增長率擴張,這得益於該國強大的醫療技術基礎、對數據安全的重視以及先進的研究基礎設施。德國正在大力投資醫院管理、診斷自動化和藥物研究等領域的人工智慧驅動解決方案。生成式人工智慧與醫療IT平台的整合正在學術醫院和私人醫療機構中廣泛應用,這與德國對數位醫療轉型和法規合規性的重視相一致。
亞太醫療保健產生人工智慧市場洞察
在2025年至2032年的預測期內,亞太地區醫療保健生成型人工智慧市場預計將以26.7%的複合年增長率保持高速增長,這得益於醫療數位化的不斷推進、政府推動人工智慧應用的舉措,以及中國、印度和日本等國家科技驅動型醫療基礎設施的不斷發展。該地區不斷增長的人口、日益加重的疾病負擔以及不斷增長的研發投入,正促使醫療保健提供者將人工智慧融入診斷、藥物開發和患者監測領域。此外,新興新創公司和本土科技巨頭正在積極開發針對本地區醫療保健挑戰的生成型人工智慧工具。
日本醫療保健產生人工智慧市場洞察
日本醫療生成型人工智慧市場正蓬勃發展,這得益於該國對機器人技術、人工智慧和精準醫療的深度關注。醫院和研究機構正在加速採用生成型人工智慧,尤其是在醫學影像、老年護理和行政自動化等領域。日本人口老化速度加快,對人工智慧輔助工具的需求也隨之增加,這些工具旨在簡化診斷、記錄和遠端病患照護流程。政府主導的旨在加強醫療創新的措施也支撐了市場的強勁成長。
印度醫療保健產生人工智慧市場洞察
2024年,印度醫療保健生成式人工智慧市場佔據亞太地區最大收入份額,這得益於數位醫療平台的快速擴張、遠距醫療使用率的提升以及基於人工智慧的醫療新創公司的蓬勃發展。隨著對經濟實惠、可擴展的醫療保健解決方案的需求不斷增長,生成式人工智慧正被應用於診斷、患者分診和臨床文件等領域。印度持續推動智慧醫療基礎建設,加之政府對人工智慧研究的大力支持以及龐大的技術型勞動力隊伍,進一步加速了該技術在醫院和製藥業的應用。
醫療保健產生人工智慧市場份額
醫療保健生成人工智慧產業主要由知名公司主導,包括:
- Koninklijke Philips NV(荷蘭)
- 微軟(美國)
- 西門子醫療股份公司(德國)
- 英特爾公司(美國)
- NVIDIA公司(美國)
- 谷歌公司(美國)
- GE醫療(美國)
- 美敦力(愛爾蘭)
- 美光科技有限公司(美國)
- 亞馬遜公司(美國)
- 甲骨文(美國)
- 強生公司及其附屬公司(美國)
- Merative(美國)
- General Vision, Inc.(美國)
- CloudMedx(美國)
- Oncora Medical(美國)
- Enlitic(美國)
- Lunit Inc.(韓國)
- Qure.ai(印度)
- 史賽克(美國)
- Biobeat(以色列)
全球醫療保健生成人工智慧市場的最新發展是什麼?
- 2024年4月,GoogleDeepMind宣布其專為醫療領域量身定制的Med-PaLM 2模型取得進展。 Med-PaLM 2基於多種醫療資料集進行訓練,展現出能夠高精度回答美國醫師執照考試題目的能力。這項進展彰顯了Google致力於負責任地將生成式人工智慧融入醫療保健領域,增強臨床決策支持,並透過語言理解和生成能力為醫生提供更精準的診斷工具的承諾。
- 2024年3月,微軟與Epic Systems擴大了策略合作,將生成式AI融入電子健康記錄(EHR)。該計畫將微軟的Azure OpenAI服務嵌入Epic的軟體中,旨在簡化病歷匯總和醫療文件等管理任務。這項進展凸顯了生成式AI在減少臨床醫師倦怠和提高醫療工作流程效率方面日益增長的重要性。
- 2024年2月,NVIDIA與全球生物製藥公司安進(Amgen)合作,利用生成式AI加速藥物研發。此次合作利用NVIDIA的BioNeMo平台,專注於模擬蛋白質結構和交互作用,以更快辨識候選藥物。此次合作展示如何利用生成式AI顯著縮短藥物研發的時間和成本,從而重新定義傳統的藥物研發流程。
- 2024年1月,IBM Watson Health 在其 Merge Imaging Suite 中推出了全新的生成式 AI 功能,為放射科醫生提供自動影像註釋功能,並提升診斷準確性。這項進步使醫療專業人員能夠更快地處理和解讀影像數據,鞏固了 IBM 在將生成式 AI 應用於臨床影像和診斷領域的領導地位。
- 2024年1月,AWS HealthLake 透過與 Bedrock 集成,擴展了其生成式 AI 產品,使醫療保健提供者能夠透過可自訂的 LLM 產生摘要、患者指導和臨床文件。這項發展體現了 Amazon Web Services 持續致力於支援醫療保健領域可擴展且符合 HIPAA 標準的生成式 AI 解決方案,從而改善臨床環境中的患者溝通和營運效率。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。