全球人工智慧 (AI)製造業市場,按產品(硬體、軟體和服務)、技術(機器學習、自然語言處理、上下文感知計算和電腦視覺)、應用(預測性維護和機械檢查、物料移動、生產計劃、現場服務、品質控制、網路安全、工業機器人和回收)、產業(汽車、能源和電力、製藥、重金屬和機械製造、半導體和飲料大、墨西哥、巴西、阿根廷、南美洲其他地區、德國、義大利、英國、法國、西班牙、荷蘭、比利時、瑞士、土耳其、俄羅斯、歐洲其他地區、日本、中國、印度、韓國、澳洲、新加坡、馬來西亞、泰國、印尼、菲律賓、亞太其他地區、沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲其他地區)產業趨勢和預測2029 年
預計製造業人工智慧 (AI) 市場在 2022 年至 2029 年預測期內將以 17.20% 的速度成長,到 2029 年預計將達到 53.251 億美元。 Data Bridge Market Research 關於製造業人工智慧 (AI) 市場的報告提供了對預測期內各種預期因素的分析和見解,並分析了這些因素對市場成長的影響。人工智慧在智慧業務流程中的應用日益增多,正在加速製造業人工智慧 (AI) 市場的成長。
人工智慧(AI)是電腦科學領域最發達的技術之一。它與人類智慧有著相似的特性,包括更好的決策能力、語言理解能力等等。
預計在預測期內推動製造業人工智慧 (AI) 市場成長的主要因素包括:大量複雜資料集的成長以及工業物聯網 (IoT)和自動化的發展。此外,運算能力的提升預計將對製造業人工智慧 (AI) 市場的成長起到緩衝作用。此外,創投的不斷增長預計將對製造業人工智慧 (AI) 市場的成長起到緩衝作用。另一方面,製造商不願採用基於人工智慧的技術,預計將在預測期內阻礙製造業人工智慧 (AI) 市場的成長。
此外,製造工廠營運效率的提升以及為遏制新冠疫情影響而日益普及的自動化技術,將為未來幾年製造業人工智慧 (AI) 市場的成長提供潛在機會。然而,熟練勞動力數量的限制以及與數據隱私相關的擔憂,可能會在不久的將來進一步阻礙製造業人工智慧 (AI) 市場的成長…
這份製造業人工智慧 (AI) 市場報告詳細介紹了最新發展動態、貿易法規、進出口分析、生產分析、價值鏈優化、市場份額、國內和本地市場參與者的影響,並分析了新興收入來源、市場法規變化、戰略市場成長分析、市場規模、品類市場成長、應用領域和主導地位、產品審批、產品領域以及市場發展以及市場創新領域以及市場創新領域的發展以及市場發展以及市場新領域的發展技術以及市場發展以及市場創新領域以及市場發展技術。如需了解更多關於製造業人工智慧 (AI) 市場的信息,請聯繫 Data Bridge 市場研究公司以取得分析師簡報。我們的團隊將協助您做出明智的市場決策,實現市場成長。
全球製造業人工智慧(AI)市場範圍和市場規模
製造業人工智慧 (AI) 市場根據產品、技術、應用和產業進行細分。細分市場之間的成長有助於您分析利基市場的成長潛力和市場策略,並確定您的核心應用領域以及目標市場的差異化。
- 根據產品類型,製造業人工智慧 (AI) 市場細分為硬體、軟體和服務。
- 根據技術,製造業人工智慧(AI)市場細分為機器學習、自然語言處理、情境感知計算和電腦視覺。
- 根據應用,製造業人工智慧 (AI) 市場細分為預測性維護和機械檢查、物料移動、生產計劃、現場服務、品質控制、網路安全、工業機器人和回收。
- 根據產業,製造業人工智慧(AI)市場細分為汽車、能源和電力、製藥、重金屬和機械製造、半導體和電子、食品和飲料等。
製造業人工智慧(AI) 市場國家級分析
對製造業的人工智慧 (AI) 市場進行了分析,並按國家、產品、技術、應用和行業提供了上述市場規模和數量資訊。
製造業人工智慧 (AI) 市場報告涵蓋的國家包括北美洲的美國、加拿大和墨西哥,南美洲的巴西、阿根廷和南美洲其他地區,歐洲的德國、義大利、英國、法國、西班牙、荷蘭、比利時、瑞士、土耳其、俄羅斯,歐洲其他地區,日本、中國、印度、韓國、澳洲、新加坡、馬來西亞、泰國、印尼、菲律賓,亞太地區 (APAC) 地區的其他地區,美國地區、英國地區和其他地區。
由於政府的政策和法規,亞太地區在製造業人工智慧 (AI) 市場佔據主導地位。此外,人工智慧研發技術的進步以及對工人在工作領域應用人工智慧技術的培訓,將在預測期內進一步推動該地區製造業人工智慧 (AI) 市場的成長。由於未來幾年歐洲地區將湧現一些關鍵參與者,預計該地區製造業人工智慧 (AI) 市場將顯著成長。
報告的國家部分還提供了影響各個市場當前和未來趨勢的國內市場監管變化以及影響因素。下游和上游價值鏈分析、技術趨勢、波特五力分析和案例研究等數據點是預測各個國家市場狀況的一些指標。此外,在對國家/地區數據進行預測分析時,還考慮了全球品牌的存在和可用性,以及它們因本土和國內品牌的激烈競爭或稀缺而面臨的挑戰、國內關稅的影響以及貿易路線。
製造業人工智慧(AI)的競爭格局和 市場份額分析
製造業人工智慧 (AI) 市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投入、新市場計劃、區域佈局、公司優勢和劣勢、產品發布、產品寬度和廣度以及應用主導地位。以上提供的數據僅與公司在製造業人工智慧 (AI) 市場的重點相關。
製造業人工智慧 (AI) 市場的一些主要參與者包括 NVIDIA Corporation、IBM、Alphabet Inc.、Microsoft Corporation、Intel Corporation、Siemens、通用電氣公司、General Vision, inc.、Progress Software Corporation、美光科技公司、三菱電機公司、Sight Machine、思科系統公司、SAP SE、羅克韋爾自動化公司、AIBrain韋爾、VicleAzon、O. Inc.、SparkCognition.、Rethink Robotics、UBTECH Robotics, Inc.、Aquant、Bright Machines, Inc. 和 Flutura 等。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
目录
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY POSITIONING GRID
2.2.5 COMAPANY MARKET SHARE ANALYSIS
2.2.6 MULTIVARIATE MODELLING
2.2.7 TOP TO BOTTOM ANALYSIS
2.2.8 STANDARDS OF MEASUREMENT
2.2.9 VENDOR SHARE ANALYSIS
2.2.10 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.11 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 REGULATIONS
5.2 PORTER FIVE FORCES
5.3 CASE STUDIES
6 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.2.1 PROCESSOR
6.2.1.1. GPU
6.2.1.2. ASIC
6.2.1.3. MPU
6.2.1.4. FPGA
6.2.2 MEMORY
6.2.3 NETWORK
6.3 SOFTWARE
6.3.1 AI SOLUTION
6.3.1.1. CLOUD
6.3.1.2. ON PREMISES
6.3.2 AI PLATFORM
6.3.2.1. APPLICATION PROGRAM INTERFACE (API)
6.3.2.2. MACHINE LEARNING FRAMEWORK
6.4 SERVICES
6.4.1 TRAINING AND CONSULTING
6.4.2 DEPLOYMENT AND INTEGRATION
6.4.3 SUPPORT AND MAINTENANCE
7 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY DEPLOYMENT MODEL
7.1 OVERVIEW
7.2 CLOUD
7.2.1 PUBLIC
7.2.2 PRIVATE
7.2.3 HYBRID
7.3 ON-PREMISES
8 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY ORGANIZATION SIZE
8.1 OVERVIEW
8.2 LARGE ENTERPRISE
8.2.1 BY DEPLOYMENT MODEL
8.2.1.1. CLOUD
8.2.1.2. ON PREMISES
8.3 SMALL AND MEDIUM-SIZED ENTERPRISES (SMES)
8.3.1 BY DEPLOYMENT MODEL
8.3.1.1. CLOUD
8.3.1.2. ON PREMISES
9 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY TECHNOLOGY
9.1 OVERVIEW
9.2 COMPUTER VISION
9.3 MACHINE LEARNING
9.3.1 DEEP LEARNING
9.3.2 REINFORCEMENT LEARNING
9.3.3 SUPERVISED LEARNING
9.3.4 UNSUPERVISED LEARNING
9.3.5 OTHERS
9.4 NATURAL LANGUAGE PROCESSING
9.5 CONTEXT-AWARE COMPUTING
9.6 OTHERS
10 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY APPLICATION
10.1 OVERVIEW
10.1.1 PREDICTIVE MAINTENANCE
10.1.2 QUALITY CONTROL
10.1.3 PRODUCTION PLANNING
10.1.4 FIELD SERVICES
10.1.5 MATERIAL MOVEMENT
10.1.6 PERFORMANCE OPTIMIZATION
10.1.7 ASSET AND CONDITION MONITORING
10.1.8 INDUSTRIAL ROBOTS
10.1.9 CYBERSECURITY
10.1.10 RECLAMATION
10.1.11 SAFETY
10.1.12 FINANCE MANAGEMENT
10.1.13 OTHERS
11 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY END USER
11.1 OVERVIEW
11.2 AUTOMOTIVE
11.2.1 BY TECHNOLOGY
11.2.1.1. COMPUTER VISION
11.2.1.2. MACHINE LEARNING
11.2.1.3. NATURAL LANGUAGE PROCESSING
11.2.1.4. COMPUTER VISION
11.2.1.5. CONTEXT-AWARE COMPUTING
11.2.1.6. OTHERS
11.3 SEMICONDUCTORS AND ELECTRONICS
11.3.1 BY TECHNOLOGY
11.3.1.1. COMPUTER VISION
11.3.1.2. MACHINE LEARNING
11.3.1.3. NATURAL LANGUAGE PROCESSING
11.3.1.4. COMPUTER VISION
11.3.1.5. CONTEXT-AWARE COMPUTING
11.3.1.6. OTHERS
11.4 HEAVY METALS AND MACHINE MANUFACTURING
11.4.1 BY TECHNOLOGY
11.4.1.1. COMPUTER VISION
11.4.1.2. MACHINE LEARNING
11.4.1.3. NATURAL LANGUAGE PROCESSING
11.4.1.4. COMPUTER VISION
11.4.1.5. CONTEXT-AWARE COMPUTING
11.4.1.6. OTHERS
11.5 HEALTHCARE AND PHARMACEUTICALS
11.5.1 BY TECHNOLOGY
11.5.1.1. COMPUTER VISION
11.5.1.2. MACHINE LEARNING
11.5.1.3. NATURAL LANGUAGE PROCESSING
11.5.1.4. COMPUTER VISION
11.5.1.5. CONTEXT-AWARE COMPUTING
11.5.1.6. OTHERS
11.6 ENERGY AND POWER
11.6.1 BY TECHNOLOGY
11.6.1.1. COMPUTER VISION
11.6.1.2. MACHINE LEARNING
11.6.1.3. NATURAL LANGUAGE PROCESSING
11.6.1.4. COMPUTER VISION
11.6.1.5. CONTEXT-AWARE COMPUTING
11.6.1.6. OTHERS
11.7 AEROSPACE
11.7.1 BY TECHNOLOGY
11.7.1.1. COMPUTER VISION
11.7.1.2. MACHINE LEARNING
11.7.1.3. NATURAL LANGUAGE PROCESSING
11.7.1.4. COMPUTER VISION
11.7.1.5. CONTEXT-AWARE COMPUTING
11.7.1.6. OTHERS
11.8 RETAIL AND E-COMMERCE
11.8.1 BY TECHNOLOGY
11.8.1.1. COMPUTER VISION
11.8.1.2. MACHINE LEARNING
11.8.1.3. NATURAL LANGUAGE PROCESSING
11.8.1.4. COMPUTER VISION
11.8.1.5. CONTEXT-AWARE COMPUTING
11.8.1.6. OTHERS
11.9 FOOD AND BEVERAGES
11.9.1 BY TECHNOLOGY
11.9.1.1. COMPUTER VISION
11.9.1.2. MACHINE LEARNING
11.9.1.3. NATURAL LANGUAGE PROCESSING
11.9.1.4. COMPUTER VISION
11.9.1.5. CONTEXT-AWARE COMPUTING
11.9.1.6. OTHERS
11.1 OTHERS
12 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY REGION
12.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
12.1.1 NORTH AMERICA
12.1.1.1. U.S.
12.1.1.2. CANADA
12.1.1.3. MEXICO
12.1.2 EUROPE
12.1.2.1. GERMANY
12.1.2.2. U.K.
12.1.2.3. FRANCE
12.1.2.4. ITALY
12.1.2.5. SPAIN
12.1.2.6. THE NETHERLANDS
12.1.2.7. SWITZERLAND
12.1.2.8. TURKEY
12.1.2.9. BELGIUM
12.1.2.10. RUSSIA
12.1.2.11. REST OF EUROPE
12.1.3 ASIA-PACIFIC
12.1.3.1. CHINA
12.1.3.2. JAPAN
12.1.3.3. SOUTH KOREA
12.1.3.4. INDIA
12.1.3.5. SINGAPORE
12.1.3.6. AUSTRALIA
12.1.3.7. MALAYSIA
12.1.3.8. PHILIPPINES
12.1.3.9. THAILAND
12.1.3.10. INDONESIA
12.1.3.11. REST OF ASIA-PACIFIC
12.1.4 SOUTH AMERICA
12.1.4.1. BRAZIL
12.1.4.2. ARGENTINA
12.1.4.3. REST OF SOUTH AMERICA
12.1.5 MIDDLE EAST AND AFRICA
12.1.5.1. SOUTH AFRICA
12.1.5.2. EGYPT
12.1.5.3. SAUDI ARABIA
12.1.5.4. U.A.E
12.1.5.5. ISRAEL
12.1.5.6. REST OF MIDDLE EAST AND AFRICA
12.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
13 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: GLOBAL
13.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
13.3 COMPANY SHARE ANALYSIS: EUROPE
13.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
13.5 MERGERS & ACQUISITIONS
13.6 NEW PRODUCT DEVELOPMENT & APPROVALS
13.7 EXPANSIONS
13.8 REGULATORY CHANGES
13.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
14 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, SWOT AND DBMR ANALYSIS
15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, COMPANY PROFILE
15.1 IBM
15.1.1 COMPANY SNAPSHOT
15.1.2 REVENUE ANALYSIS
15.1.3 GEOGRAPHIC PRESENCE
15.1.4 PRODUCT PORTFOLIO
15.1.5 RECENT DEVELOPMENTS
15.2 INTEL CORPORATION
15.2.1 COMPANY SNAPSHOT
15.2.2 REVENUE ANALYSIS
15.2.3 GEOGRAPHIC PRESENCE
15.2.4 PRODUCT PORTFOLIO
15.2.5 RECENT DEVELOPMENTS
15.3 MICROSOFT
15.3.1 COMPANY SNAPSHOT
15.3.2 REVENUE ANALYSIS
15.3.3 GEOGRAPHIC PRESENCE
15.3.4 PRODUCT PORTFOLIO
15.3.5 RECENT DEVELOPMENTS
15.4 NVIDIA CORPORATION
15.4.1 COMPANY SNAPSHOT
15.4.2 REVENUE ANALYSIS
15.4.3 GEOGRAPHIC PRESENCE
15.4.4 PRODUCT PORTFOLIO
15.4.5 RECENT DEVELOPMENTS
15.5 GOOGLE
15.5.1 COMPANY SNAPSHOT
15.5.2 REVENUE ANALYSIS
15.5.3 GEOGRAPHIC PRESENCE
15.5.4 PRODUCT PORTFOLIO
15.5.5 RECENT DEVELOPMENTS
15.6 AMAZON WEB SERVICES (AWS)
15.6.1 COMPANY SNAPSHOT
15.6.2 REVENUE ANALYSIS
15.6.3 GEOGRAPHIC PRESENCE
15.6.4 PRODUCT PORTFOLIO
15.6.5 RECENT DEVELOPMENTS
15.7 MICRON TECHNOLOGY
15.7.1 COMPANY SNAPSHOT
15.7.2 REVENUE ANALYSIS
15.7.3 GEOGRAPHIC PRESENCE
15.7.4 PRODUCT PORTFOLIO
15.7.5 RECENT DEVELOPMENTS
15.8 SIEMENS AG
15.8.1 COMPANY SNAPSHOT
15.8.2 REVENUE ANALYSIS
15.8.3 GEOGRAPHIC PRESENCE
15.8.4 PRODUCT PORTFOLIO
15.8.5 RECENT DEVELOPMENTS
15.9 SIGHT MACHINE
15.9.1 COMPANY SNAPSHOT
15.9.2 REVENUE ANALYSIS
15.9.3 GEOGRAPHIC PRESENCE
15.9.4 PRODUCT PORTFOLIO
15.9.5 RECENT DEVELOPMENTS
15.1 ORACLE
15.10.1 COMPANY SNAPSHOT
15.10.2 REVENUE ANALYSIS
15.10.3 GEOGRAPHIC PRESENCE
15.10.4 PRODUCT PORTFOLIO
15.10.5 RECENT DEVELOPMENTS
15.11 SAP SE
15.11.1 COMPANY SNAPSHOT
15.11.2 REVENUE ANALYSIS
15.11.3 GEOGRAPHIC PRESENCE
15.11.4 PRODUCT PORTFOLIO
15.11.5 RECENT DEVELOPMENTS
15.12 ROCKWELL AUTOMATION
15.12.1 COMPANY SNAPSHOT
15.12.2 REVENUE ANALYSIS
15.12.3 GEOGRAPHIC PRESENCE
15.12.4 PRODUCT PORTFOLIO
15.12.5 RECENT DEVELOPMENTS
15.13 PROGRESS SOFTWARE CORPORATION
15.13.1 COMPANY SNAPSHOT
15.13.2 REVENUE ANALYSIS
15.13.3 GEOGRAPHIC PRESENCE
15.13.4 PRODUCT PORTFOLIO
15.13.5 RECENT DEVELOPMENTS
15.14 MITSUBISHI ELECTRIC
15.14.1 COMPANY SNAPSHOT
15.14.2 REVENUE ANALYSIS
15.14.3 GEOGRAPHIC PRESENCE
15.14.4 PRODUCT PORTFOLIO
15.14.5 RECENT DEVELOPMENTS
15.15 VICARIOUS
15.15.1 COMPANY SNAPSHOT
15.15.2 REVENUE ANALYSIS
15.15.3 GEOGRAPHIC PRESENCE
15.15.4 PRODUCT PORTFOLIO
15.15.5 RECENT DEVELOPMENTS
15.16 AQUANT
15.16.1 COMPANY SNAPSHOT
15.16.2 REVENUE ANALYSIS
15.16.3 GEOGRAPHIC PRESENCE
15.16.4 PRODUCT PORTFOLIO
15.16.5 RECENT DEVELOPMENTS
15.17 RETHINK ROBOTICS GMBH
15.17.1 COMPANY SNAPSHOT
15.17.2 REVENUE ANALYSIS
15.17.3 GEOGRAPHIC PRESENCE
15.17.4 PRODUCT PORTFOLIO
15.17.5 RECENT DEVELOPMENTS
15.18 UBTECH ROBOTICS
15.18.1 COMPANY SNAPSHOT
15.18.2 REVENUE ANALYSIS
15.18.3 GEOGRAPHIC PRESENCE
15.18.4 PRODUCT PORTFOLIO
15.18.5 RECENT DEVELOPMENTS
15.19 SPARKCOGNITION
15.19.1 COMPANY SNAPSHOT
15.19.2 REVENUE ANALYSIS
15.19.3 GEOGRAPHIC PRESENCE
15.19.4 PRODUCT PORTFOLIO
15.19.5 RECENT DEVELOPMENTS
15.2 FLUTURA
15.20.1 COMPANY SNAPSHOT
15.20.2 REVENUE ANALYSIS
15.20.3 GEOGRAPHIC PRESENCE
15.20.4 PRODUCT PORTFOLIO
15.20.5 RECENT DEVELOPMENTS
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
16 CONCLUSION
17 QUESTIONNAIRE
18 RELATED REPORTS
19 ABOUT DATA BRIDGE MARKET RESEARCH

研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。