Global Ai Infrastructure Market
市场规模(十亿美元)
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 69.44 Billion |
![]() |
USD 1,248.60 Billion |
![]() |
|
![]() |
|
全球人工智慧 (AI) 基礎設施市場細分,按產品(硬體和軟體)、技術(機器學習和深度學習)、功能(訓練和推理)、部署類型(本地、雲端和混合)、最終用戶(企業、政府組織和雲端服務提供者) - 行業趨勢和預測到 2032 年
人工智慧(AI)基礎設施市場規模
- 2024 年全球人工智慧 (AI) 基礎設施市場價值為694.4 億美元,預計到 2032 年將達到 12,486 億美元
- 在 2025 年至 2032 年的預測期內,市場可能以43.50% 的複合年增長率成長,主要受深度學習和神經網路進步的推動
- 這一增長受到人工智慧模型複雜性上升、行業人工智慧整合以及雲端和邊緣人工智慧成長等因素的推動
人工智慧(AI)基礎設施市場分析
- 人工智慧 (AI) 基礎設施是指部署和擴展 AI 工作負載(包括深度學習、機器學習和資料處理)所必需的硬體、軟體和網路元件。它使組織能夠有效地處理複雜的人工智慧模型和大量資料計算
- 市場成長主要得益於人工智慧驅動應用程式的日益普及、對高效能運算 (HPC) 的需求不斷增長以及深度學習和神經網路的進步。隨著各行各業加速數位轉型,對可擴展、高效的人工智慧基礎設施的需求變得比以往任何時候都更加重要
- 此外,人工智慧與雲端運算的融合正在重塑人工智慧基礎設施格局。人工智慧驅動的解決方案優化工作負載分配,提高運算效率,並提高即時數據處理能力
- 例如,NVIDIA開發了專用於 AI 的 GPU和基於雲端的 AI 運算平台,使企業能夠利用加速運算能力進行深度學習應用
- 受人工智慧晶片組的不斷進步、人工智慧自動化的興起以及資料中心投資的增加的推動,人工智慧基礎設施市場將持續成長。對即時人工智慧分析、邊緣運算和增強運算能力的需求日益增長,將進一步推動市場擴張,企業優先考慮人工智慧的可擴展性和效率,以保持競爭力
報告範圍和人工智慧(AI)基礎設施市場細分
屬性 |
人工智慧(AI)基礎設施關鍵市場洞察 |
涵蓋的領域 |
|
覆蓋國家 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
主要市場參與者 |
|
市場機會 |
|
加值資料資訊集 |
除了市場價值、成長率、市場區隔、地理覆蓋範圍、市場參與者和市場情景等市場洞察之外,Data Bridge 市場研究團隊策劃的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 pestle 分析。 |
人工智慧(AI)基礎設施市場趨勢
“人工智慧優化硬體的採用日益廣泛”
- 全球人工智慧 (AI) 基礎設施市場的一個突出趨勢是越來越多地採用針對 AI 優化的硬體
- 這一趨勢是由對智慧工作負載分配、預測性維護和即時監控日益增長的需求所驅動,使企業能夠擴展人工智慧運營,同時最大限度地降低基礎設施成本
- 例如,Google在其資料中心實施了DeepMind 的人工智慧技術,透過優化冷卻系統和整體效率,實現了能源消耗的大幅降低
- 此外,隨著企業投資綠色資料中心,利用人工智慧實現最佳功耗並減少碳足跡,向可持續和節能的人工智慧基礎設施的轉變預計將獲得動力
- 隨著競爭加劇,技術供應商將繼續開發先進的人工智慧驅動的資料中心解決方案,以滿足企業不斷變化的需求。人工智慧在雲端運算、邊緣運算和高效能運算中的日益融合將進一步推動市場發展,使人工智慧驅動的基礎設施成為未來技術進步的關鍵推動因素
人工智慧(AI)基礎設施市場動態
司機
“高效能運算(HPC)的需求不斷增長”
- 對人工智慧 (AI) 和自動化的日益依賴是人工智慧基礎設施市場成長的主要驅動力。隨著企業從傳統運算框架轉向人工智慧系統,對能夠處理複雜工作負載的高效能基礎設施的需求變得比以往任何時候都更加重要
- 這種轉變在醫療保健、金融和汽車等行業尤為明顯,這些行業中的組織正在利用人工智慧基礎設施來支援即時分析、深度學習和大規模數據處理
- 隨著人工智慧應用需要大量運算能力,人工智慧模型訓練和部署的複雜性也隨之增加。該公司目前正在投資針對 AI 優化的基礎設施,包括 GPU、TPU 和 AI 加速伺服器,以增強處理能力、減少延遲並提高整體效率
- 隨著企業尋求可擴展且經濟高效的解決方案來滿足日益增長的運算需求,人工智慧驅動的雲端服務的日益普及進一步刺激了對先進人工智慧基礎設施的需求
- 透過整合高效能運算 (HPC)、機器學習 (ML) 和 AI 專用處理器,組織可以加速 AI 工作負載、優化能源效率並增強資料密集型環境中的可擴展性
例如,
- NVIDIA推出了DGX SuperPOD,這是一款 AI 驅動的超級運算基礎設施,使企業能夠以更快的處理速度訓練大規模 AI 模型
- 谷歌的張量處理單元 (TPU)旨在增強 AI 模型訓練,使基於雲端的 AI 解決方案能夠以更高的效率和更低的功耗運行
- 隨著人工智慧基礎設施的不斷進步、企業投資的增加以及對即時人工智慧處理的需求,對強大的人工智慧基礎設施解決方案的需求將持續上升。這將推動市場擴張,使企業能夠更有效地部署人工智慧驅動的創新,同時提高營運績效。
機會
“基於 FPGA 的加速器需求激增”
- 基於(現場可程式閘陣列)FPGA 加速器的需求激增為人工智慧基礎設施市場帶來了重大機會。隨著人工智慧工作負載變得越來越複雜,企業正在尋求高度靈活、高效的硬體解決方案來優化效能並減少延遲
- 基於 FPGA 的加速器因其能夠針對特定 AI 任務進行重新配置,在性能、功率效率和客製化之間實現平衡而越來越受到關注
- 與傳統的 GPU 和 CPU 不同,FPGA 具有更低的功耗和更高的運算吞吐量,使其成為 AI 模型推理、深度學習和邊緣運算應用的理想選擇
例如,
- 英特爾的 Agilex FPGA旨在加速資料中心和邊緣環境中的 AI 工作負載,為不斷發展的 AI 模型提供最佳化的功率效率和適應性
- Microsoft Azure透過其Project Brainwave提供基於 FPGA 的 AI 加速,使企業能夠增強雲端的深度學習推理效能
- 隨著企業對人工智慧驅動基礎設施的投資不斷增加,對基於 FPGA 的加速器的需求將持續成長,從而促進各行各業人工智慧模式部署和效能最佳化的創新
克制/挑戰
“人工智慧工作負載日益複雜”
- 人工智慧 (AI) 模型日益複雜,對 AI 基礎設施市場提出了重大挑戰,因為企業越來越需要高效能運算 (HPC) 功能來高效處理複雜的工作負載
- 隨著人工智慧應用的發展,深度學習模型、自然語言處理 (NLP) 和電腦視覺任務需要更強大的運算能力,從而導致更高的能源消耗和基礎設施成本的增加
- 此外,自動駕駛、醫療保健和金融等行業對即時人工智慧處理的需求進一步加大了人工智慧基礎設施供應商提供低延遲、高速解決方案的壓力
例如,
- 特斯拉 利用人工智慧 HPC 系統進行自動駕駛汽車訓練,需要大量運算資源來處理現實世界的駕駛數據
- 隨著人工智慧工作負載變得越來越複雜,企業必須投資先進的運算基礎設施、高效的資源管理和節能處理解決方案,以保持可擴展性和成本效益
人工智慧(AI)基礎設施市場範圍
市場根據產品、技術、功能、部署類型和最終用戶進行細分。
分割 |
細分 |
透過提供 |
|
依技術 |
|
按功能 |
|
依部署類型 |
|
按最終用戶 |
|
人工智慧(AI)基礎設施市場區域分析
“北美是人工智慧(AI)基礎設施市場的主導地區”
- 北美在人工智慧 (AI) 基礎設施市場佔據主導地位,這得益於主要人工智慧技術提供商的存在以及人工智慧伺服器和高效能運算 (HPC) 系統的廣泛採用
- 美國憑藉其在人工智慧研究、雲端運算領域的領先地位,以及Google、微軟和亞馬遜網路服務 (AWS)等科技巨頭快速部署人工智慧資料中心,佔據了相當大的份額。
- 該地區強大的 IT 基礎設施、不斷增長的人工智慧驅動型企業應用以及對人工智慧硬體解決方案不斷增加的投資,使其佔據了市場主導地位
- 此外,人工智慧在自動化、預測分析和基於雲端的人工智慧服務中的應用日益增多,進一步鞏固了北美在人工智慧基礎設施方面的領導地位
“亞太地區預計將實現最高成長率”
- 預計亞太地區將見證人工智慧 (AI) 基礎設施市場的最高成長率,這得益於政府支持的數位轉型計畫以及雲端運算和基於 AI 的資料中心的快速擴張
- 中國、印度、日本等國正大力投資人工智慧基礎設施,包括5G網路、智慧城市、大型資料中心建設等「新基建」項目
- 製造業、電子商務和金融服務等行業對人工智慧應用的需求不斷增長,推動了對可擴展、高效能人工智慧基礎設施解決方案的需求
- 隨著亞太地區企業加速採用人工智慧,亞太地區為人工智慧基礎設施供應商提供了豐厚的機遇,這些供應商可提供先進的運算解決方案,以滿足不斷發展的數位經濟日益增長的需求
人工智慧(AI)基礎設施市場份額
市場競爭格局提供了競爭對手的詳細資訊。詳細資訊包括公司概況、公司財務狀況、收入、市場潛力、研發投資、新市場計劃、全球影響力、生產基地和設施、生產能力、公司優勢和劣勢、產品發布、產品寬度和廣度、應用優勢。以上提供的數據點僅與公司對市場的關注有關。
市場中主要的市場領導者有:
- 思科系統公司(美國)
- IBM(美國)
- 英特爾公司(美國)
- 三星(韓國)
- Google(美國)
- 微軟(美國)
- 美光科技有限公司(美國)
- NVIDIA公司(美國)
- 甲骨文(美國)
- Arm Limited(英國)
- 超微半導體公司(美國)
- 戴爾公司(美國)
- 惠普企業開發有限公司(美國)
- 目標(美國)
- Synopsys公司(美國)
- Nutanix(美國)
- Pure Storage, Inc.(美國)
- 亞馬遜網路服務公司(美國)
全球人工智慧(AI)基礎設施市場的最新發展
- 2022年2月,AMD宣布以全股票交易方式成功完成對賽靈思的收購。此次策略收購旨在將賽靈思業界領先的自適應運算技術與 AMD 的高效能運算解決方案相結合,增強 AMD 的能力
- 2021 年 4 月,英特爾宣布推出第三代英特爾至強可擴充處理器,採用平衡架構,整合人工智慧、進階安全功能和加密加速
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。