Global Ai Infrastructure Market
市场规模(十亿美元)
CAGR : %
Forecast Period |
2022 –2029 |
Market Size (Base Year) |
USD 23.50 Billion |
Market Size (Forecast Year) |
USD 422.55 Billion |
CAGR |
|
Major Markets Players |
全球人工智能 (AI) 基础设施市场,按产品(硬件、软件)、技术(机器学习、深度学习)、功能(训练和推理)、部署类型(本地、云、混合)、最终用户(企业、政府组织、云服务提供商)划分 - 行业趋势和预测至 2029 年
市场分析和规模
人工智能在过去几年中取得了巨大的增长和发展,并将在短短几年内得到更广泛的应用。人工智能基础设施使企业数据世界得到优化和简化。通过数据库和消息队列系统运行的机器学习算法通过人工智能基础设施进行训练,以提供数据传输流。
2021 年全球人工智能 (AI) 基础设施市场价值为 235 亿美元,预计到 2029 年将达到 4225.5 亿美元,在 2022-2029 年的预测期内复合年增长率为 43.50%。由于数据中心提供商和云公司的数量增加,云在相应市场中占据最大的部署类型细分市场。除了市场价值、增长率、细分市场、地理覆盖范围、市场参与者和市场情景等市场洞察外,Data Bridge 市场研究团队策划的市场报告还包括深入的专家分析、进出口分析、定价分析、生产消费分析和 pestle 分析。
市场定义
人工智能 (AI) 基础设施是指协助机器学习 (ML) 的技术。该技术代表机器学习和人工智能解决方案的结合,用于开发和部署可扩展、可靠和特定的数据解决方案。众所周知,AI 基础设施是从头到尾实现整个机器学习过程的关键。
报告范围和市场细分
报告指标 |
细节 |
预测期 |
2022 至 2029 年 |
基准年 |
2021 |
历史岁月 |
2020(可定制为 2014 - 2019) |
定量单位 |
收入(单位:十亿美元)、销量(单位:台)、定价(美元) |
涵盖的领域 |
产品(硬件、软件)、技术(机器学习、深度学习)、功能(训练和推理)、部署类型(本地、云、混合)、最终用户(企业、政府组织、云服务提供商) |
覆盖国家 |
北美洲的美国、加拿大和墨西哥、欧洲的德国、法国、英国、荷兰、瑞士、比利时、俄罗斯、意大利、西班牙、土耳其、欧洲其他地区、亚太地区 (APAC) 的中国、日本、印度、韩国、新加坡、马来西亚、澳大利亚、泰国、印度尼西亚、菲律宾、亚太地区 (APAC) 的其他地区、沙特阿拉伯、阿联酋、以色列、埃及、南非、中东和非洲 (MEA) 的其他地区、巴西、阿根廷和南美洲的其他地区。 |
涵盖的市场参与者 |
Cisco (US), IBM (US), Intel Corporation (US), SAMSUNG (South Korea), Google (US), Microsoft (US), Micron Technology, Inc (US), NVIDIA Corporation (US), Oracle (US), Arm Limited (UK), Xilinx (US), Advanced Micro Devices, Inc (US), Dell (US), Hewlett Packard Enterprises Development LP (US), Habana Labs Ltd (US), Facebook, Inc (US), Synopsys, Inc (US), Nutanix (US), Pure Storage, Inc (US), Amazon Web Services, Inc (US), among others |
Market Opportunities |
|
Artificial Intelligence (AI) Infrastructure Market Dynamics
This section deals with understanding the market drivers, advantages, opportunities, restraints and challenges. All of this is discussed in detail as below:
Drivers
Rise in Awareness regarding Artificial Intelligence (AI)
The increase in awareness regarding the incorporation of artificial intelligence (AI) into business processes among enterprises acts as one of the major factors driving the artificial intelligence (AI) infrastructure market. This technology enhances operational efficiency while reducing cost through automation of process flows.
- High Investments in Compute-Intensive Chip
GPU/CPU manufacturers, such as AMD, Qualcomm, NVIDIA, and Intel, among others increasing their investments in the development of chips that are compatible with AI solutions accelerate the market growth. Also, development of field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs) drives the market.
- Surge in the Adoption of Chatbots
The increase in the adoption of Chatbots to decline the operational costs for businesses that is estimated to be up to 30% further influence the market. AI is beneficial for solving a specific set of problems and working with a significant volume of high-quality Big Data.
Additionally, rapid urbanization, change in lifestyle, surge in investments and increased consumer spending positively impact the artificial intelligence (AI) infrastructure market..
Opportunities
Furthermore, surge in demand for FPGA-based accelerators and rise in need for co-processors due to slowdown of Moore’s Law extend profitable opportunities to the market players in the forecast period of 2022 to 2029. The rise in potential of AI-based tools for elderly care will further expand the market.
Restraints/Challenges
On the other hand, concerns regarding data privacy in AI platforms and lack of AI hardware experts and skilled workforce are expected to obstruct market growth. Also, availability of limited structured data to train and develop efficient AI systems and unreliability of AI algorithms are projected to challenge the artificial intelligence (AI) infrastructure market in the forecast period of 2022-2029.
这份人工智能 (AI) 基础设施市场报告详细介绍了最新发展、贸易法规、进出口分析、生产分析、价值链优化、市场份额、国内和本地市场参与者的影响,分析了新兴收入领域的机会、市场法规的变化、战略市场增长分析、市场规模、类别市场增长、应用领域和主导地位、产品批准、产品发布、地域扩展、市场技术创新。如需了解有关人工智能 (AI) 基础设施市场的更多信息,请联系 Data Bridge Market Research 获取分析师简报,我们的团队将帮助您做出明智的市场决策,实现市场增长。
COVID-19 对人工智能(AI)基础设施市场的影响
COVID-19 疫情对人工智能 (AI) 基础设施市场产生了积极影响。它帮助全球数百万人利用先进工具进行各种应用,尤其是医疗保健。人工智能 (AI) 基础设施对许多医疗应用非常有用,例如解码用于药物开发的基因组序列、增强 CT 扫描、远程患者监控和医疗保健聊天机器人等。由于采用了使用 AI、区块链和物联网技术的智能制造流程,人工智能 (AI) 基础设施市场预计将在 COVID-19 后实现高增长。
最新动态
- 英特尔宣布将于2021年4月推出第三代英特尔至强可扩展处理器。该处理器提供均衡的架构,内置人工智能、高级安全功能和加密加速。
- AMD 于 2021 年 4 月宣布收购 Xilinx 的消息。此次收购将为两家公司提供互补的产品组合,并有助于利用行业机会。
全球人工智能(AI)基础设施市场范围和市场规模
人工智能 (AI) 基础设施市场根据产品、技术、功能、部署和最终用户进行细分。这些细分市场之间的增长将帮助您分析行业中增长微弱的细分市场,并为用户提供有价值的市场概览和市场洞察,帮助他们做出战略决策,确定核心市场应用。
奉献
- 硬件
- 软件
技术
- 机器学习
- 深度学习
功能
- 训练
- 推理
部署类型
- 本地
- 云
- 杂交种
终端用户
- 企业
- 政府组织
- 云服务提供商
人工智能 (AI) 基础设施市场区域分析/洞察
对人工智能(AI)基础设施市场进行分析,并按上述国家、产品、技术、功能、部署和最终用户提供市场规模洞察和趋势。
人工智能(AI)基础设施市场报告涵盖的国家包括北美的美国、加拿大和墨西哥、欧洲的德国、法国、英国、荷兰、瑞士、比利时、俄罗斯、意大利、西班牙、土耳其、欧洲其他地区、亚太地区的中国、日本、印度、韩国、新加坡、马来西亚、澳大利亚、泰国、印度尼西亚、菲律宾、亚太地区的亚太地区(APAC)其他地区、中东和非洲(MEA)的沙特阿拉伯、阿联酋、以色列、埃及、南非、中东和非洲(MEA)的其他地区、南美洲的巴西、阿根廷和南美洲其他地区。
由于北美地区人工智能服务器的采用率高且拥有知名的人工智能技术提供商,北美在人工智能(AI)基础设施市场占据主导地位。
预计亚太地区 (APAC) 将在 2022 年至 2029 年的预测期内出现显著增长,因为该地区将建设 5G 网络和数据中心等“新基础设施”项目。
报告的国家部分还提供了影响单个市场因素和国内市场监管变化,这些因素和变化会影响市场的当前和未来趋势。下游和上游价值链分析、技术趋势和波特五力分析、案例研究等数据点是用于预测单个国家市场情景的一些指标。此外,在提供国家数据的预测分析时,还考虑了全球品牌的存在和可用性以及它们因来自本地和国内品牌的激烈或稀缺竞争而面临的挑战、国内关税和贸易路线的影响。
竞争格局和人工智能 (AI) 基础设施市场
人工智能 (AI) 基础设施市场竞争格局按竞争对手提供详细信息。详细信息包括公司概况、公司财务状况、产生的收入、市场潜力、研发投资、新市场计划、全球影响力、生产基地和设施、生产能力、公司优势和劣势、产品发布、产品宽度和广度、应用主导地位。以上提供的数据点仅与公司对人工智能 (AI) 基础设施市场的关注有关。
人工智能 (AI) 基础设施市场的一些主要参与者包括
- 思科 (美国)
- IBM(美国)
- 英特尔公司(美国)
- 三星(韩国)
- 谷歌(美国)
- 微软 (美国)
- 美光科技公司(美国)
- NVIDIA 公司(美国)
- 甲骨文 (美国)
- Arm Limited(英国)
- Xilinx(美国)
- 超微半导体公司 (美国)
- 戴尔(美国)
- 惠普企业发展有限公司 (美国)
- Habana Labs Ltd(美国)
- Facebook, Inc(美国)
- Synopsys 公司(美国)
- Nutanix (美国)
- Pure Storage, Inc(美国)
- 亚马逊网络服务公司(美国)
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.
The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.
可定制
Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.