Global Ai Agriculture Market
市场规模(十亿美元)
CAGR :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
全球農業人工智慧市場,按產品(硬體、軟體和服務)、技術(機器學習 (ML)、電腦視覺、自然語言處理 (NLP)、機器人與自動化及其他)、應用(精準農業、牲畜監測、天氣預報、土壤管理、作物健康監測、供應鏈優化及其他)、部署模式(本地部署和雲端部署)、最終用戶(
農業人工智慧市場規模
根據Data Bridge Market Research分析,全球農業人工智慧市場預計到2032年將達到104.9億美元, 2025年為20.8億美元,預測期內複合年增長率(CAGR)為22.39%。該報告還全面涵蓋了價格分析、專利分析和技術進步等方面的內容。
農業人工智慧市場分析
受多項關鍵因素驅動,全球農業人工智慧市場可望顯著成長。其中,電信費用管理 (TEM) 解決方案能夠大幅降低成本,這主要吸引那些希望優化電信支出的企業。行動電話和其他便攜式設備的日益普及進一步推動了對高效費用管理解決方案的需求。 TEM 提供至關重要的費用透明度,使企業能夠更好地了解和控制其電信支出。此外,物聯網和雲端應用的興起也提高了對 TEM 解決方案的需求,因為這些技術為電信費用管理帶來了新的複雜性。然而,該市場也面臨一些限制因素,特別是不同地區電信法規和合規要求的差異,增加了實施和管理的難度。儘管有這些挑戰,市場仍蘊藏著巨大的成長機會。電信費用管理自動化技術以及 TEM 解決方案外包都蘊藏著巨大的發展潛力,外包可以帶來成本效益和專業知識。
|
報告指標 |
細節 |
|
預測期 |
2025年至2032年 |
|
基準年 |
2024 |
|
歷史年代 |
2023(2018-2022) |
|
定量單位 |
營收(單位:十億美元) |
|
涵蓋部分 |
依產品(硬體、軟體和服務)、技術(機器學習 (ML)、 電腦視覺、 自然語言處理 (NLP)、機器人與自動化等)、應用(精準農業、 牲畜監測、天氣預報、土壤管理、作物健康監測、供應鏈優化等)、部署模式(本地部署和雲端部署)、最終用戶(農場、農業科技公司、農業化公司、科研院等)進行分類。 |
|
覆蓋國家/地區 |
美國、加拿大和墨西哥,德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其、歐洲其他地區,中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、印尼、菲律賓、亞太其他地區,沙烏地阿拉伯、阿聯酋、南非、埃及、以色列、中東和非洲其他地區,巴西、阿根廷和南美洲其他地區 |
|
涵蓋的市場參與者 |
迪爾公司、IBM、微軟、谷歌、OpenAI、Open Text Corporation、ClimateAi、AgEagle Aerial Systems Inc.、CNH Industrial NV、AGCO Corporation、久保田株式會社、洋馬控股株式會社、DeLaval、Lely、Raven Industries, Inc.、Gamaya、思科、拜耳、TMONT. LLC、ADM、先正達全球、Corteva 和 Bowery Farming Inc. 等公司 |
市場定義
全球農業人工智慧市場 涵蓋 利用人工智慧技術提升農業實踐的各種技術和解決方案。這包括機器學習、電腦視覺和機器人技術,旨在優化作物管理、精準農業和資源配置。該市場涵蓋用於數據分析、自主機械和預測分析的人工智慧驅動工具,旨在提高農業營運的效率、產量和永續性。其應用範圍廣泛,包括作物監測、土壤管理、病蟲害防治和供應鏈優化。
全球農業人工智慧市場動態
司機
- 提高作物監測和產量預測準確性
人工智慧(AI)在農業領域的應用提升了作物監測和產量預測的準確性。透過利用機器學習演算法和數據分析,人工智慧可以分析來自衛星圖像、土壤感測器和天氣預報等各種來源的大量數據。這使得農民能夠監測作物健康狀況、識別病蟲害並更準確地預測產量。因此,人工智慧驅動的洞見有助於優化資源配置、改善決策並提高整體農業生產力。
例如,
- 根據Gramener於2021年7月發布的部落格文章,利用機器學習和人工智慧預測作物產量變得日益重要。文章探討了空間分析和物聯網設備如何增強作物監測和產量預測。利用衛星影像和氣候資料的人工智慧和機器學習模型,透過評估土壤狀況和天氣模式,提高了作物產量預測的準確性。這些技術的應用使農業生產者受益匪淺,實現了遠端監測、高效的資源測繪和預測分析,從而促進了更明智的決策和規劃。這項進步有助於更有效地管理作物。
利用人工智慧提高更先進農業技術的應用。
利用人工智慧推廣更先進的農業 技術, 意味著優化水、肥料和農藥等投入品的使用。人工智慧驅動的解決方案能夠精準管理這些資源,確保它們得到高效且精準的施用。這透過最大限度地減少浪費和提高作物產量來降低成本並提升生產力,最終實現更永續、更有效率的農業生產方式。
例如,
- 根據Intellias於2024年1月發表的一篇文章,人工智慧透過提昇耕作技術,對農業產生了顯著影響。人工智慧實現了對水、肥料和農藥的精準管理,從而降低了成本並提高了生產力。自動化系統優化了灌溉和施肥,並提高了作物產量和資源利用效率。這些進步促進了更永續、更有效率的耕作方式,最終透過提高產量和節省成本使農民受益。
機會
- 電信費用管理自動化技術
電信費用管理 (TEM) 自動化技術可簡化流程、提高準確性並降低成本。透過利用自動化工具和軟體, 電信業者 和企業能夠有效率地管理發票、追蹤費用並即時分析使用模式。這項技術提高了透明度和控制力,並支持基於數據驅動洞察的主動決策。此外,自動化還能最大限度地減少人為錯誤,確保符合監管要求,並優化資源分配,從而將 TEM 轉變為策略資產。
例如,
- 根據 Brightfin 於 2022 年 7 月發表的一篇文章,切換到自動化電信費用管理系統帶來了許多好處。首先,它顯著減少了與電信問題相關的服務台工單數量,從而釋放了 IT 資源。自動化還透過處理發票處理和費用管理等日常任務,節省了員工的時間,使他們能夠專注於更重要的項目。此外,自動化減少了人為錯誤,確保了營運的一致性和效率。最後,該系統提供了寶貴的數據洞察,並透過簡化電信管理流程幫助降低了成本。
- 根據PAG發表的一篇文章,自動化正在改變電信費用管理。它簡化了諸如監控使用情況和核對發票等任務,這對醫院和醫療機構尤其有利。自動化解決方案減少了審計所需的時間和精力,並透過優化設備使用和電信合同,顯著節省了成本。
克制/挑戰
- 持續存在的資料隱私和安全問題
儘管人工智慧在農業領域取得了令人矚目的進展,但持續存在的資料隱私和安全問題卻掩蓋了這些優勢。人工智慧系統收集和分析大量敏感的農業數據,包括作物產量、土壤狀況和農場運作情況,這給農民帶來了巨大的風險。未經授權的存取和資料外洩可能導致嚴重的後果,包括智慧財產權損失、敏感資訊被篡改以及更容易遭受網路攻擊。這些安全問題削弱了人們對人工智慧技術的信任,並阻礙了其廣泛應用。
例如
- 根據 ShardSecure 於 2023 年 8 月發布的部落格文章,農業領域面臨日益嚴峻的資料隱私和安全問題。諸如 2021 年 JBS Foods 遭受的勒索軟體攻擊等網路攻擊凸顯了該行業的脆弱性。隨著精準農業產生大量數據以及物聯網設備的興起,這些風險進一步加劇。新成立的食品和農業資訊共享與分析中心旨在解決這些問題。然而,許多農業企業仍在資料安全、合規以及抵禦人工智慧相關威脅方面苦苦掙扎。改善安全措施能夠保護敏感資料並降低代價高昂的業務中斷風險,從而使企業受益。
新冠疫情後對全球農業人工智慧市場的影響
新冠疫情後的經濟格局對全球市場產生了顯著影響。然而,隨著經濟逐步復甦,基礎建設日益受到重視,項目數量也隨之回升。業界正在適應新的規範,加強安全措施並運用數位化技術來簡化流程。隨著建設項目重回正軌,電信服務需求也隨之反彈,這為市場參與者在後疫情時代為國家基礎建設貢獻力量提供了機會。
最新進展
例如,
- 2024年6月,TeeJet Technologies推出了FM9380-F75電磁流量計。該流量計採用創新的無運動部件設計,無需維護,在各種流體條件下均能優化性能,並具有廣泛的應用兼容性,從而豐富了其精準農業產品組合,並提高了運營效率。
- 2023年11月,久保田公司在德國漢諾威國際農業機械展(Agritechnica)上展示了Agri Robo KVT,標誌著自主農業技術取得了重大進展。這款性能卓越的拖拉機解決了勞動力短缺問題,提高了安全性,並促進了高效耕作,從而增強了久保田的市場競爭力,鞏固了其創新領導地位。
全球農業人工智慧市場範圍
農業人工智慧市場可細分為五大主要部分,這些細分為基於產品、技術、應用、部署模式和最終用戶。這些細分市場的成長將有助於您分析行業中成長緩慢的領域,並為用戶提供有價值的市場概覽和市場洞察,從而幫助他們制定策略決策,確定核心市場應用。
本研究報告將全球農業人工智慧市場劃分為以下幾個細分市場:
提供
- 硬體
- 軟體
- 服務
根據產品/服務類型,市場可分為硬體、軟體和服務。
科技
- 機器學習(ML)
- 電腦視覺
- 自然語言處理(NLP)
- 機器人與自動化
- 其他的
根據技術,市場可細分為機器學習 (ML)、電腦視覺、自然語言處理 (NLP)、機器人與自動化以及其他領域。
應用
- 精準農業
- 牲畜監測
- 天氣預報
- 土壤管理
- 作物健康監測
- 供應鏈優化
- 其他的
依應用領域,市場可細分為精準農業、牲畜監測、天氣預報、土壤管理、作物健康監測、供應鏈優化等。
部署模式
- 雲
- 本地部署
根據部署方式,市場分為雲端部署和本地部署。
最終用戶
- 農場
- 農業科技公司
- 農化公司
- 研究機構
- 其他的
根據最終用戶劃分,市場分為農場、農業科技公司、農化公司、研究機構和其他。
全球農業人工智慧市場
全球農業人工智慧市場根據產品、技術、應用、部署模式和最終用戶等因素,可分為五個主要細分市場。全球農業物聯網 (IoT) 市場涵蓋的國家包括:北美地區的美國、加拿大和墨西哥;歐洲其他地區,如德國、法國、英國、荷蘭、瑞士、比利時、俄羅斯、義大利、西班牙、土耳其;亞太地區其他地區,如中國、日本、印度、韓國、新加坡、馬來西亞、澳洲、泰國、埃及、菲律賓;
在北美,美國憑藉其數量最多的硬體組件供應商而佔據主導地位。在歐洲,英國則憑藉其全國範圍內的技術進步而佔據主導地位。在亞太地區,中國憑藉其在該地區最大的硬體組件製造商而佔據主導地位。
報告的國別部分還提供了影響各個市場的因素以及影響市場當前和未來趨勢的市場監管變化。下游和上游價值鏈分析、技術趨勢、波特五力分析以及案例研究等數據點是預測各國市場前景的基礎。此外,在進行國別數據預測分析時,還會考慮亞太地區品牌的市場佔有率和可用性,以及它們因本地和國內品牌的激烈或稀缺競爭而面臨的挑戰、國內關稅的影響以及貿易路線等因素。
農業人工智慧市場競爭格局及全球市場份額分析
全球農業人工智慧市場競爭格局報告詳細介紹了各競爭對手的情況,包括公司概況、財務狀況、收入、市場潛力、研發投入、新市場拓展計劃、亞太及東南亞市場佈局、生產基地及設施、產能、公司優勢與劣勢、產品發布、產品線寬度及廣度以及應用領域優勢。以上數據僅與各公司在全球農業人工智慧市場的業務相關。全球農業人工智慧市場的主要參與者包括:Open Text Corporation、OpenAI、VALMONT INDUSTRIES, INC.、AGCO Corporation 和 IBM 等。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

