亚太深度学习神经网络 (DNN) 市场 – 行业趋势和 2028 年预测

请求目录 请求目录 与分析师交谈 与分析师交谈 立即购买 立即购买 购买前请咨询 提前咨询 免费样本报告 免费样本报告

亚太深度学习神经网络 (DNN) 市场 – 行业趋势和 2028 年预测

  • ICT
  • Upcoming Report
  • Nov 2021
  • Asia-Pacific
  • 350 页面
  • 桌子數: 220
  • 图号: 60

亚太深度学习神经网络 (DNN) 市场,按组件(硬件、软件和服务)、应用(图像识别、自然语言处理、语音识别、数据挖掘)、最终用户(银行、金融服务和保险 (BFSI)、IT 和电信、医疗保健、零售、汽车、制造、航空航天和国防、安全、其他)、国家(日本、中国、印度、韩国、澳大利亚、新加坡、马来西亚、泰国、印度尼西亚、菲律宾、亚太其他地区)划分 - 行业趋势和预测到 2028 年。

亚太深度学习神经网络 (DNN) 市场

市场分析与洞察:亚太地区深度学习神经网络 (DNN) 市场

预计深度学习神经网络 (DNN) 市场在 2021 年至 2028 年的预测期内将以 23% 的速度增长,到 2028 年预计将达到 23 亿美元的价值。Data Bridge Market Research 关于深度学习神经网络 (DNN) 市场的报告提供了有关预测期内预计会盛行的各种因素的分析和见解,同时提供了它们对市场增长的影响。各种工业应用对产品的需求增加正在加速深度学习神经网络 (DNN) 市场的增长。

深度学习神经网络 (DNN) 被定义为基于机器学习的技术,广泛用于诊断、解决预测和决策等,这些技术基于定义明确的计算架构。这些技术部署在各种应用中,例如计算机安全、语音识别、图像和视频识别、医疗诊断、工业故障检测和金融。

人工智能 (AI) 在该地区的普及是推动深度学习神经网络 (DNN) 市场增长的主要因素之一。各种组织从用户那里收集的数据越来越多,由于神经网络的处理能力、学习能力和速度的增强,该技术的广泛采用加速了市场的增长。对检测变量之间复杂的非线性关系和识别大数据模式的需求激增,以及消费者和最终用户行业快速采用较新的组件,尤其是人工智能,因为它可以帮助他们做出明智和合理的决策,让他们的生活更轻松,进一步影响了市场。此外,快速数字化、在低监督下训练大量数据集的高需求、投资激增以及人工智能的增长和发展都对深度学习神经网络 (DNN) 市场产生了积极影响。此外,现有产品的创新为市场参与者在 2021 年至 2028 年的预测期内提供了盈利机会。

另一方面,在实施算法和集成硬件时缺乏对组件和复杂性的认识预计将阻碍市场增长。预计在 2021-2028 年预测期内,缺乏熟练的专业人员将对深度学习神经网络 (DNN) 市场构成挑战。

这份深度学习神经网络 (DNN) 市场报告详细介绍了最新发展、贸易法规、进出口分析、生产分析、价值链优化、市场份额、国内和本地市场参与者的影响,分析了新兴收入来源、市场法规变化、战略市场增长分析、市场规模、类别市场增长、应用领域和主导地位、产品批准、产品发布、地域扩展、市场技术创新等方面的机会。如需了解有关深度学习神经网络 (DNN) 市场的更多信息,请联系 Data Bridge Market Research 获取分析师简报,我们的团队将帮助您做出明智的市场决策,实现市场增长。

亚太深度学习神经网络 (DNN) 市场范围和市场规模

深度学习神经网络 (DNN) 市场根据组件、应用和最终用户进行细分。细分市场之间的增长有助于您分析利基增长领域和进入市场的策略,并确定您的核心应用领域和目标市场的差异。    

  • 根据组件,深度学习神经网络 (DNN) 市场分为硬件、软件和服务。
  • 根据应用,深度学习神经网络 (DNN) 市场分为图像识别、语音识别、自然语言处理和数据挖掘。
  • 根据最终用户,深度学习神经网络 (DNN) 市场细分为银行、金融服务和保险 (BFSI)、IT 和电信、医疗保健、零售、汽车、制造、航空航天和国防、安全等。

亚太地区深度学习神经网络 (DNN) 市场规模国家级分析

对深度学习神经网络 (DNN) 市场进行了分析,并按国家、组件、应用和最终用户提供了市场规模洞察和趋势,如上所述。      

亚太深度学习神经网络 (DNN) 市场报告涵盖的国家包括日本、中国、印度、韩国、澳大利亚、新加坡、马来西亚、泰国、印度尼西亚、菲律宾和亚太其他地区。

得益于该地区的技术进步,日本在亚太地区深度学习神经网络 (DNN) 市场占据主导地位。

报告的国家部分还提供了影响单个市场因素和国内市场监管变化,这些因素和变化会影响市场的当前和未来趋势。消费量、生产地点和产量、进出口分析、价格趋势分析、原材料成本、下游和上游价值链分析等数据点是用于预测单个国家市场情景的一些主要指标。此外,在提供国家数据的预测分析时,还考虑了全球品牌的存在和可用性以及它们因来自本地和国内品牌的激烈或稀少的竞争而面临的挑战、国内关税和贸易路线的影响。

竞争格局和亚太地区深度学习神经网络 (DNN) 市场份额分析

深度学习神经网络 (DNN) 市场竞争格局按竞争对手提供详细信息。详细信息包括公司概况、公司财务状况、产生的收入、市场潜力、研发投资、新市场计划、全球影响力、生产基地和设施、生产能力、公司优势和劣势、产品发布、产品宽度和广度、应用主导地位。以上提供的数据点仅与公司对深度学习神经网络 (DNN) 市场的关注有关。

深度学习神经网络(DNN)市场报告涵盖的主要参与者包括 LYUDA RESEARCH, LLC、ALPHABET INC.(谷歌)、IBM、Micron Technologies, Inc.、Neural Technologies Limited、NEURODIMENSION, INC.、NEURALWARE、NVIDIA CORPORATION、SKYMIND INC.、SAMSUNG、Qualcomm Technologies, Inc.、Intel Corporation、Amazon Web Services, Inc.、Microsoft、GMDH LLC.、Sensory Inc.、Ward Systems Group, Inc.、Xilinx Inc.、Starmind 等。


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Interactive Data Analysis Dashboard
  • Company Analysis Dashboard for high growth potential opportunities
  • Research Analyst Access for customization & queries
  • Competitor Analysis with Interactive dashboard
  • Latest News, Updates & Trend analysis
  • Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Request for Demo

研究方法

Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.

The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.

可定制

Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.

Frequently Asked Questions

The Asia-Pacific Deep Learning Neural Networks (DNNs) Market size will be worth USD 2.3 billion by 2028.
The Asia-Pacific Deep Learning Neural Networks (DNNs) Market growth rate will be 23% by 2028.
The increase in the collection of data from users by various organizations and high adoption of the technology owning to the enhanced processing power, learning ability, and speed of neural networks are the growth drivers of the Asia-Pacific Deep Learning Neural Networks (DNNs) Market.
The component, application and end-user are the factors on which the Asia-Pacific Deep Learning Neural Networks (DNNs) Market research is based.
The major companies in the Asia-Pacific Deep Learning Neural Networks (DNNs) Market are LYUDA RESEARCH, LLC, ALPHABET INC. (google), IBM, Micron Technologies, Inc., Neural Technologies Limited, NEURODIMENSION, INC., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC., SAMSUNG, Qualcomm Technologies, Inc., Intel Corporation, Amazon Web Services, Inc., Microsoft, GMDH LLC., Sensory Inc.