Europe Deep Learning Neural Networks Dnns Market
市场规模(十亿美元)
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 11.50 Billion |
![]() |
USD 37.96 Billion |
![]() |
|
![]() |
|
歐洲深度學習神經網路 (DNN) 市場細分,按產品類型(軟體平台、硬體加速器、服務)、技術(CNN、RNN、GAN、Transformer 等)、應用(醫療診斷、自動駕駛汽車、金融服務、零售、製造等)、部署(基於雲端、本地)、最終用戶(企業、醫療保健提供者、汽車製造商、金融機構、政府機構預測)
深度學習神經網路(DNN)市場規模
- 2024 年歐洲深度學習神經網路 (DNN) 市場規模為115 億美元 ,預計 到 2032 年將達到 379.6 億美元,預測期內 複合年增長率為 16.1%。
- 這一大幅成長主要得益於人工智慧 (AI) 技術的廣泛應用、機器學習基礎設施投資的不斷增加,以及醫療、汽車、金融和零售等行業對高階數據分析需求的不斷增長。大數據的激增,加上運算能力的提升,進一步加速了市場擴張。
- 該地區在技術創新方面的領先地位,得益於大量的研發投入、政府推動人工智慧應用的舉措以及眾多領先科技公司的鼎力支持,是市場持續成長的關鍵因素。此外,深度神經網路 (DNN) 在自主系統、智慧製造和個人化消費者服務中的日益整合,也推動了整個歐洲對深度學習解決方案的巨大需求。
深度學習神經網路(DNN)市場分析
- 深度學習神經網路 (DNN) 是一種先進的人工智慧演算法,旨在模擬人腦的思考過程,使機器能夠處理大量資料集、識別模式並做出資料驅動的決策。這些系統包括軟體平台、GPU 和 TPU 等硬體加速器以及專業服務,對於醫療診斷、自動駕駛汽車、金融建模、零售個人化和製造自動化等領域的應用至關重要。
- 歐洲在人工智慧創新領域的主導地位極大地推動了市場發展。 2023年,歐洲將佔全球人工智慧研發支出的40%以上,其中美國則位居首位。自動駕駛汽車的快速普及——預計到2027年,德國道路上將有超過120萬輛自動駕駛汽車——將推動對用於即時影像和感測器資料處理的深度神經網路(DNN)的需求。
- 基於Transformer的模型和生成式AI等技術進步正在增強DNN的能力,使其在自然語言處理(NLP)、電腦視覺和預測分析等領域的應用成為可能。德國政府的AI計劃,例如國家AI研究資源(NAIRR),正在促進創新並支持市場成長。
- 德國佔據市場主導地位,2024 年的收入份額高達 42.1%,價值 102.9 億美元,這得益於其強大的技術生態系統、NVIDIA 和 Google 等主要參與者的存在以及對人工智慧基礎設施的大量投資。
- 預計法國將實現最快的成長率,預計 2025 年至 2032 年的複合年增長率為 16.8%,這得益於政府對人工智慧研究的支持以及醫療保健和汽車行業日益廣泛的應用。
- 在產品類型中,軟體平台部分在 2024 年佔據了 48.7% 的最大市場份額,這歸因於 TensorFlow 和 PyTorch 等深度學習框架在企業和研究應用中的廣泛使用。
報告範圍和歐洲深度學習神經網路(DNN)市場細分
屬性 |
歐洲深度學習神經網路 (DNN) 關鍵市場洞察 |
涵蓋的領域 |
|
覆蓋國家 |
歐洲
|
主要市場參與者 |
|
市場機會 |
|
加值資料資訊集 |
除了對市場價值、成長率、細分、地理覆蓋範圍和主要參與者等市場情景的洞察之外,Data Bridge Market Research 策劃的市場報告還包括深入的專家分析、定價分析、品牌份額分析、消費者調查、人口統計分析、供應鏈分析、價值鏈分析、原材料/消耗品概述、供應商選擇標準、PESTLE 分析、波特分析和監管框架。 |
深度學習神經網路(DNN)市場趨勢
“生成式人工智慧、Transformer 模型、邊緣運算和永續人工智慧解決方案”
- 採用生成式人工智慧和基於變換器的模型是一個突出的趨勢,2024 年超過 30% 的新 DNN 部署將利用這些技術應用於 NLP、影像生成和創意內容製作,從而增強零售和媒體領域的用戶體驗。
- 邊緣運算的興起,使得 2024 年 25% 的新 DNN 解決方案專為設備處理而設計,在自動駕駛汽車和物聯網應用中越來越受歡迎,從而減少了延遲並改善了即時決策。
- 更重視永續的人工智慧解決方案,2024 年 15% 的新硬體加速器將獲得能源效率認證,符合歐洲綠色技術計畫並減少人工智慧運算對環境的影響。
- 基於雲端的 DNN 平台的採用正在快速成長,在 AWS、Microsoft Azure 和 Google Cloud 等供應商提供的可擴展和靈活的解決方案的推動下,到 2024 年採用率將成長 20%。
- DNN 與物聯網生態系統的整合(尤其是在智慧製造和醫療保健領域)正在不斷擴大,2024 年將有 18% 的新解決方案專為這些領域的即時數據分析和自動化而設計。
- 消費者對個人化人工智慧驅動服務(例如零售業的推薦系統和醫療保健業的預測診斷)的需求不斷增長,這推動了整個歐洲 DNN 應用的創新。
深度學習神經網路(DNN)市場動態
司機
“人工智慧的採用、大數據的擴散、自主系統、政府支持和技術進步”
- 人工智慧技術在各行各業得到廣泛應用,預計到 2027 年歐洲人工智慧市場規模將達到 2000 億美元,這將推動醫療診斷、自動駕駛和金融建模等應用對 DNN 的巨大需求。
- 大數據的激增,到 2023 年,歐洲企業每天將產生超過 2.5 EB 的數據,這推動了對高級 DNN 的需求,以處理和分析複雜的數據集,從而獲得可操作的見解。
- 自動駕駛汽車發展迅速,預計到 2027 年德國道路上將有超過 120 萬輛自動駕駛汽車,這增加了對即時影像處理、感測器融合和決策演算法中 DNN 的需求。
- 法國國家人工智慧計畫和泛加拿大人工智慧戰略等政府措施為人工智慧研究提供了大量資金和監管支持,促進了各產業對 DNN 的創新和應用。
- NVIDIA 的 A100 GPU 和 Google 的 TPU 等硬體加速器的進步增強了 DNN 效能,使得資料中心和邊緣裝置中的複雜模型能夠更快地進行訓練和推理。
- 對個人化消費者體驗的需求不斷增長,到 2023 年,65% 的德國零售商將採用人工智慧驅動的推薦系統,這推動了 DNN 在零售、電子商務和客戶服務應用中的整合。
克制/挑戰
“高昂的開發成本、資料隱私問題、技能短缺、能源消耗和監管複雜性”
- 開發和部署 DNN 的成本很高,尤其是客製化硬體加速器和大規模 AI 模型,這對中小企業的採用構成了挑戰,限制了成本敏感領域的市場可擴展性。
- 受《加州消費者隱私法案》(CCPA)和法國《個人資訊保護和電子文件法案》(PIPEDA)等法規的推動,資料隱私問題增加了處理敏感資料的 DNN 提供者的合規成本和複雜性。
- 人工智慧和深度學習專業知識的技能短缺,預計到 2026 年歐洲將缺少 25 萬名人工智慧專業人員,這對 DNN 技術的實施、維護和創新構成了挑戰。
- DNN 訓練和推理過程能耗高,大型模型每年能耗高達 500 MWh,引發了人們對永續性和營運成本的擔憂,尤其是在資料中心。
- 人工智慧演算法和硬體的不斷進步導致技術快速淘汰,迫使企業在研發方面投入巨資,從而降低了小型企業的盈利能力並限制了長期創新。
- 監管複雜性,例如德國和法國各地不同的人工智慧治理框架,為標準化 DNN 部署和合規性帶來了挑戰,增加了供應商的營運開銷。
歐洲深度學習神經網路(DNN)市場範圍
歐洲深度學習神經網路 (DNN) 市場根據產品類型、技術、應用、部署、最終用戶進行細分,以全面了解市場動態和成長機會。
- 依產品類型
根據產品類型,市場細分為軟體平台、硬體加速器和服務。軟體平台領域佔據主導地位,2024 年營收份額達 48.7%,價值 60.9 億美元,這得益於 TensorFlow、PyTorch 和 Keras 等框架在企業和研究應用中的廣泛使用。受 AI 諮詢和實施服務需求的推動,預計服務領域在 2025 年至 2032 年期間將以 16.5% 的複合年增長率增長,增長最快。
依技術
根據技術類型,市場細分為卷積神經網路 (CNN)、循環神經網路 (RNN)、生成對抗網路 (GAN)、Transformer 等。 CNN 領域在 2024 年佔據最大份額,達到 40.2%,這主要得益於其在影像辨識和自動駕駛汽車領域的應用。預計 Transformer 領域在 2025 年至 2032 年期間的複合年增長率將達到 17.1%,這得益於自然語言處理 (NLP) 和生成式人工智慧 (Generative AI) 的進步。
按應用
根據應用領域,市場細分為醫療診斷、自動駕駛汽車、金融服務、零售和電子商務、製造自動化等。在人工智慧醫學影像和預測性診斷的推動下,醫療診斷領域在2024年佔據了最大的收入份額,達到35.6%。受自動駕駛汽車發展的推動,預計2025年至2032年,自動駕駛汽車領域的複合年增長率將達到18.3%,是最快的成長領域。
按部署
依部署方式,市場可分為雲端部署和本地部署。在AWS、Azure和Google雲端提供的可擴展解決方案的推動下,雲端部署在2024年佔據了60.8%的顯著份額。預計在2025年至2032年期間,雲端部署的複合年增長率將達到16.9%,是最快的成長領域,這得益於對靈活且經濟高效的人工智慧部署的需求。
按最終用戶
根據最終用戶,市場細分為企業、醫療保健提供者、汽車製造商、金融機構、政府機構和其他。企業細分市場在2024年佔據主導地位,營收份額達42.1%,這得益於人工智慧在商業分析中的應用。醫療保健提供者細分市場預計將在2025年至2032年期間以17.4%的複合年增長率成長,這主要得益於人工智慧驅動的診斷和個人化醫療。
深度學習神經網路(DNN)市場區域分析
德國深度學習神經網路 (DNN) 市場洞察
2024年,德國以42.1%的收入份額(價值102.9億美元)的絕對優勢領先市場,這得益於其強大的科技生態系統、NVIDIA、谷歌和微軟等關鍵參與者的參與以及對人工智慧基礎設施的大力投資。德國在自動駕駛汽車、醫療保健人工智慧和金融服務領域的領先地位,加上政府透過國家人工智慧計畫提供的支持,進一步鞏固了其主導地位。
法國深度學習神經網路 (DNN) 市場洞察
在「泛加拿大人工智慧戰略」等政府舉措的推動下,法國預計在2025年至2032年期間以16.8%的複合年增長率保持最快增長。該策略支援醫療保健、汽車和製造業領域的人工智慧研究和應用。 2024年,法國佔了12.1%的市場份額,深度神經網路(DNN)在智慧城市和醫療診斷領域的應用日益廣泛。
英國深度學習神經網路 (DNN) 市場洞察
英國在2024年佔據了5.6%的市場份額,這得益於其汽車和製造業的蓬勃發展,這些行業越來越多地採用人工智慧進行自動化和品質控制。英國政府致力於推動工業4.0,並與科技公司建立合作關係,這為英國市場的成長提供了支持。
深度學習神經網路(DNN)市場份額
- 深度學習神經網路 (DNN) 產業主要由知名公司主導,其中包括:
- NVIDIA公司(美國)
- Google LLC(美國)
- 微軟公司(美國)
- 亞馬遜網路服務公司(美國)
- 英特爾公司(美國)
- IBM公司(美國)
- 超微半導體公司(AMD)(美國)
- Meta AI(美國)
- 高通公司(美國)
- 甲骨文公司(美國)
- SAS 研究所(美國)
- Palantir Technologies Inc.(美國)
- H2O.ai(美國)
- DataRobot, Inc.(美國)
- Cerebras Systems Inc.(美國)
- xAI(美國)
歐洲深度學習神經網路(DNN)市場最新發展
- 2023年10月,NVIDIA發布了其新一代處理器H200 Tensor Core GPU,旨在加速深度神經網路 (DNN) 的訓練和推理。與前代產品相比,H200 在生成式AI工作負載方面效能提升高達20%。它針對Transformer和擴散模型等大規模AI模型進行了最佳化,這些模型對於自然語言處理 (NLP) 和電腦視覺領域的應用至關重要。包括AWS和Azure在內的主流雲端服務供應商已經採用H200為其AI平台提供支持,從而增強了企業和研究環境中的效能。
- 2024 年 1 月,Google雲端推出了 Vertex AI Vision,這是其 Vertex AI 平台的全新功能,旨在利用深度學習進行即時影像和視訊分析。這款基於雲端的解決方案支援零售業(例如智慧結帳、庫存追蹤)和製造業(例如缺陷檢測)的用例。得益於優化的模型部署和推理效能,Vertex AI Vision 的處理速度提升了 15%。 Vertex AI Vision 可輕鬆與現有的Google雲端服務集成,幫助開發者更快、更有效率地擴展電腦視覺應用。
- 2024年3月,微軟擴展了與OpenAI的合作,將基於Transformer的先進模式嵌入Azure AI平台。此次整合顯著增強了企業用戶的自然語言處理(NLP)能力。應用範圍包括自動化客戶服務、語言翻譯、內容產生和文件摘要。德國已有100多家公司採用了這些功能,利用Azure的基礎設施大規模實現智慧自動化。
- 2024年4月,馬斯克的xAI推出了其Grok平台的增強版,整合了更先進的深度神經網路(DNN),以提供更強大的分析推理和數據解讀能力。升級後的Grok系統專為預測建模、商業智慧和策略預測等領域的企業應用而設計。 Grok專注於即時洞察和更卓越的效能,現已成為數據驅動決策和企業級AI部署的強大工具。
- 2024年6月,英特爾推出了Gaudi 3 AI加速器,旨在提供節能、高吞吐量的深度神經網路(DNN)訓練。與上一代產品相比,Gaudi 3的功耗降低了25%,同時提升了記憶體頻寬和運算效能。此晶片定位於在大型資料中心環境中進行AI訓練和推理的經濟高效的解決方案。歐洲各主要數據基礎設施供應商已經開始採用該晶片。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。