产品发布(博客)

2023 年 8 月 3 日

通过人工智能 (AI) 转变供应链运营

供应链中的人工智能(AI)拥有几个重要特征,这有助于其在供应链市场中的人工智能中发挥重要作用。这些特性包括高级数据分析、机器学习算法、自动化和预测能力。人工智能可以实时分析大量数据,从而改善决策、提高效率和优化成本。它有助于需求预测、库存管理、供需匹配和路线优化。此外,人工智能驱动的供应链解决方案提供了更高的可视性、透明度和可追溯性,确保合规性并降低风险。这些特性推动了人工智能在供应链市场的采用,改变了传统的供应链运营方式,并为企业带来了切实的利益。

根据数据桥市场研究, 供应链市场中的人工智能 2022-2029年预测期间复合年增长率为8.60%。因此,到2029年,人工智能在供应链中的市场价值将高达5451万美元

“对供应链和物流数据更高可视性和透明度的需求推动了市场发展”

对供应链和物流数据的可见性和透明度不断增长的需求是供应链市场人工智能的重要驱动力。企业和消费者都寻求对其供应链运营的实时跟踪、可追溯性和准确洞察。机器学习和数据分析等人工智能技术使组织能够处理大量数据、识别模式并生成可行的见解。通过利用人工智能,公司可以提高供应链效率、优化库存管理、降低风险并提高客户满意度。对可见性和透明度的迫切需求是供应链领域采用人工智能的强大催化剂。

什么限制了 供应链市场人工智能?

“欠发达和发展中经济体缺乏技术专长”

欠发达和发展中经济体缺乏技术专长,这严重制约了供应链市场的人工智能。这些地区往往面临资源、基础设施和熟练劳动力有限的挑战。在供应链中实施和采用先进的人工智能技术需要专业知识和技术专长,而这些知识和技术专长可能正是这些经济体所缺乏的。这为人工智能解决方案的广泛采用设置了障碍,阻碍了这些地区的市场增长,并在供应链领域造成了发达经济体和发展中经济体之间的技术差距。

细分:供应链市场中的人工智能

供应链人工智能市场根据产品、技术、应用和行业进行细分。

  • 从提供的角度来看,供应链市场中的人工智能分为硬件、软件和服务。
  • 在技​​术的基础上,供应链市场的人工智能被细分为机器学习、 自然语言处理、上下文感知计算和计算机视觉。
  • 从应用角度来看,人工智能在供应链市场上进行了细分 车队的管理, 供应链规划, 风险管理、仓库管理、虚拟助理、货运经纪等。
  • 根据行业划分,供应链人工智能市场已细分为汽车、航空航天、制造、零售、医疗保健、消费包装商品以及食品和饮料。

区域洞察:北美主导供应链市场人工智能

北美在供应链市场人工智能中的主导地位归因于其主要参与者和发达经济体的主要存在,这些经济体优先考虑增强现有解决方案。预计这一趋势将在预测期内持续下去,进一步加强北美在市场中的地位。

预计亚太地区的供应链市场人工智能将出现显着增长并实现最高的复合年增长率(CAGR)。这可归因于该地区年轻且精通技术的人口以及物联网 (IOT) 技术的日益采用等因素,这些因素推动了对先进供应链解决方案的需求。

欲了解有关此次考察的更多信息, https://www.databridgemarketresearch.com/reports/global-artificial-intelligence-in-supply-chain-market

杰出的关键参与者 供应链市场中的人工智能 包括:

  • 亚马逊网络服务公司(美国)
  • 项目44(美国)
  • 德国邮政股份公司 – (德国)
  • 联邦快递(美国)
  • 通用电气(美国)
  • Google LLC(美国)
  • IBM(美国)
  • 英特尔公司(美国)
  • Coupa Software Inc.(美国)
  • 美光科技公司(美国)
  • 微软(美国)
  • NVIDIA 公司(美国)
  • 甲骨文(美国)
  • SAP SE(德国)
  • 三星(韩国)
  • Xilinx –(美国)
  • Fraight AI – (美国)
  • CH Robinson Worldwide, Inc. –(美国)
  • E2open, LLC –(美国)
  • RELEX 解决方案(芬兰)
  • SKF集团(瑞典)
  • 菜鸟网络(中国)
  • 接驳机(美国)
  • 美国软件公司(美国)

以上是报告中涵盖的主要参与者,要了解更多、详尽的供应链市场人工智能公司联系方式, https://www.databridgemarketresearch.com/contact

研究方法:供应链市场中的全球人工智能

数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析以及主要(行业专家)验证。除此之外,数据模型还包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、公司市场份额分析、测量标准、全球与区域以及供应商份额分析。如有进一步询问,请要求分析师致电。