Global Machine Learning Chip Market
Размер рынка в млрд долларов США
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 5.00 Billion |
![]() |
USD 78.56 Billion |
![]() |
|
![]() |
|
>Сегментация мирового рынка микросхем для машинного обучения по типу микросхемы (GPU, ASIC, FPGA, CPU и другие), технологии (система на кристалле, система в корпусе, многокристальный модуль и другие), отраслевой вертикали (СМИ и реклама, BFSI, ИТ и телекоммуникации, розничная торговля, здравоохранение, автомобилестроение и транспорт и другие) — отраслевые тенденции и прогноз до 2032 г.
Анализ рынка микросхем машинного обучения
Чипы машинного обучения широко используются для предотвращения ошибок и экономии средств в различных отраслях, включая автомобилестроение, транспорт, производство, медиа и рекламу, а также финансы. Аппаратная инфраструктура включает хранение, вычисления, компоненты и сетевое взаимодействие.
Размер рынка чипов машинного обучения
Объем мирового рынка микросхем для машинного обучения в 2024 году оценивался в 5,00 млрд долларов США, а к 2032 году, по прогнозам, он достигнет 78,56 млрд долларов США, при этом среднегодовой темп роста составит 41,10% в прогнозируемый период с 2025 по 2032 год.
Область отчета и сегментация рынка
Атрибуты |
Основные сведения о рынке чипов машинного обучения |
Сегментация |
|
Страны, охваченные |
США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальная Европа в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, Остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Израиль, Египет, Южная Африка, Остальной Ближний Восток и Африка (MEA) как часть Ближнего Востока и Африки (MEA), Бразилия, Аргентина и Остальная часть Южной Америки как часть Южной Америки. |
Ключевые игроки рынка |
Google Inc (США), Amazon Web Services, Inc. (США), Advanced Micro Devices, Inc (США), BitMain Technologies Holding Company (Китай), Intel Corporation (США), Xilinx (США), SAMSUNG (Южная Корея), Qualcomm Technologies, Inc. (США), NVIDIA Corporation (США), Wave Computing, Inc. (США), Graphcore (Великобритания), IBM Corporation (США), Taiwan Semiconductor Manufacturing Company Limited (Тайвань) и Micron Technology, Inc. (США) и другие. |
Возможности рынка |
|
Определение рынка микросхем машинного обучения
Машинное обучение (ML) определяется как часть искусственного интеллекта (AI) , который обычно работает на основе экспериментального обучения вместо программирования для задачи принятия решений. Эти чипы устанавливаются для улучшения ядер интеллектуальной собственности. Они помогают улучшить производительность, результаты области (PPA) с помощью ML, мощности, оптимизации и аналитики.
Динамика рынка чипов машинного обучения
В этом разделе рассматривается понимание движущих сил рынка, преимуществ, возможностей, ограничений и проблем. Все это подробно обсуждается ниже:
Драйверы
- Рост тенденции цифровизации
Рост тенденции цифровизации наряду с расширением индустрии информационных технологий (ИТ) по всему миру является одним из основных факторов, стимулирующих рост рынка чипов машинного обучения. Алгоритмы глубокого обучения способны автоматически перехватывать доступные точки данных, что повышает точность и эффективность процесса принятия решений.
- Рост числа кибератак
Рост числа кибератак побуждает отрасли использовать системы управления базами данных, обнаружения мошенничества и кибербезопасности , что ускоряет развитие рынка.
Интеграция с передовыми технологиями
Интеграция с аналитикой больших данных и облачными вычислениями для предоставления расширенных услуг различным отраслям промышленности еще больше влияет на рынок. Научно-исследовательская и опытно-конструкторская деятельность (RandD) улучшает аппаратные и программные решения для обработки глубокого обучения.
Кроме того, быстрая урбанизация, изменение образа жизни, резкий рост инвестиций и увеличение потребительских расходов оказывают положительное влияние на рынок микросхем машинного обучения.
Возможности
Кроме того, возросшее внимание к разработке систем искусственного интеллекта, распознающих человека, расширяет возможности получения прибыли для участников рынка в прогнозируемый период с 2025 по 2032 год. Кроме того, внедрение искусственного интеллекта в периферийные устройства будет способствовать дальнейшему расширению рынка.
Ограничения/Проблемы
С другой стороны, ожидается, что низкая окупаемость инвестиций и нехватка квалифицированной рабочей силы в сфере ИИ будут препятствовать росту рынка. Кроме того, ожидается, что ограниченные структурированные данные будут бросать вызов рынку чипов машинного обучения в прогнозируемый период 2025-2032 гг.
В этом отчете о рынке микросхем машинного обучения содержатся сведения о новых последних разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрение продуктов, запуски продуктов, географическое расширение, технологические инновации на рынке. Чтобы получить больше информации о рынке микросхем машинного обучения, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Масштаб рынка чипов машинного обучения
Рынок чипов машинного обучения сегментирован на основе типа чипа, технологии и отраслевой вертикали. Рост среди этих сегментов поможет вам проанализировать сегменты с незначительным ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночные идеи, которые помогут им принимать стратегические решения для определения основных рыночных приложений.
Тип чипа
- ГПУ
- ASIC
- ПЛИС
- Процессор
- Другие
- НПУ
- Гибридный чип
Технологии
- Система на кристалле
- Система-в-корпусе
- Многокристальный модуль
- Другие
Отраслевая вертикаль
- СМИ и реклама
- БФСИ
- ИТ и Телекоммуникации
- Розничная торговля
- Здравоохранение
- Автомобили и транспорт
- Другие
Региональный анализ рынка чипов машинного обучения
Проведен анализ рынка микросхем машинного обучения, а также предоставлены сведения о размерах рынка и тенденциях по странам, типам микросхем, технологиям и отраслевым вертикалям, как указано выше.
Страны, охваченные отчетом о рынке микросхем для машинного обучения: США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, остальные страны Европы в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Израиль, Египет, Южная Африка, остальные страны Ближнего Востока и Африки (MEA) как часть Ближнего Востока и Африки (MEA), Бразилия, Аргентина и остальные страны Южной Америки как часть Южной Америки.
Северная Америка доминирует на рынке микросхем машинного обучения из-за растущей обеспокоенности по поводу безопасности критически важной инфраструктуры и конфиденциальных данных в регионе.
Ожидается, что в прогнозируемый период с 2025 по 2032 год в Европе будет наблюдаться значительный рост за счет внедрения передовых технологий в регионе.
Раздел отчета по странам также содержит отдельные факторы, влияющие на рынок, и изменения в регулировании на внутреннем рынке, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости вверх и вниз по течению, технические тенденции и анализ пяти сил Портера, тематические исследования — вот некоторые из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по странам учитываются наличие и доступность глобальных брендов и их проблемы, связанные с большой или малой конкуренцией со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых путей.
Доля рынка чипов машинного обучения
Конкурентная среда рынка микросхем машинного обучения содержит сведения по конкурентам. Включены сведения о компании, финансы компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и широта продукта, доминирование приложений. Приведенные выше данные относятся только к фокусу компаний, связанному с рынком микросхем машинного обучения.
Лидерами рынка чипов машинного обучения являются:
- Google Inc (США)
- Amazon Web Services, Inc. (США)
- Advanced Micro Devices, Inc (США)
- Холдинговая компания BitMain Technologies (Китай)
- Корпорация Intel (США)
- Xilinx (США), SAMSUNG (Южная Корея)
- Qualcomm Technologies, Inc. (США)
- Корпорация NVIDIA (США)
- Wave Computing, Inc. (США)
- Графкор (Великобритания)
- Корпорация IBM (США)
- Taiwan Semiconductor Manufacturing Company Limited (Тайвань)
- Micron Technology, Inc. (США)
Последние разработки на рынке чипов для машинного обучения
- NVIDIA выпустила два мощных продукта для своей платформы EGX Edge AI и EGX A100 в мае 2020 года для более крупных коммерческих готовых серверов. Эти платформы способны безопасно развертывать, обновлять и управлять парками серверов удаленно.
- NVIDIA объявила о выпуске NVIDIA A100, первого графического процессора на базе архитектуры NVIDIA Ampere, в мае 2020 года. Он находится в стадии полного производства и поставляется клиентам по всему миру. Он использует прорывы в дизайне архитектуры NVIDIA Ampere и обеспечивает самый большой скачок производительности компании на сегодняшний день.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.