Отчет об анализе размера, доли и тенденций мирового рынка глубокого обучения в машинном зрении — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Отчет об анализе размера, доли и тенденций мирового рынка глубокого обучения в машинном зрении — обзор отрасли и прогноз до 2032 года

  • Semiconductors and Electronics
  • Upcoming Report
  • Apr 2025
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Deep Learning In Machine Vision Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 5.13 Billion USD 13.18 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 5.13 Billion
Diagram Размер рынка (прогнозируемый год)
USD 13.18 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Cognex Corporation
  • Intel Corporation
  • NATIONAL INSTRUMENTS CORP.
  • SICK AG
  • Datalogic S.p.A.

Глобальная сегментация рынка глубокого обучения в машинном зрении по предложению (оборудование, программное обеспечение и услуги), применению (инспекция, анализ изображений, обнаружение аномалий, классификация объектов, отслеживание объектов, подсчет, обнаружение штрихкодов, обнаружение признаков, обнаружение местоположения, оптическое распознавание символов, распознавание лиц, сегментация экземпляров и другие), объекту (изображения и видео), вертикали (электроника, производство, автомобилестроение и транспорт, продукты питания и напитки, аэрокосмическая промышленность, здравоохранение, строительство и материалы, энергетика и другие) — отраслевые тенденции и прогноз до 2032 года

Глубокое обучение на рынке машинного зрения

Глубокое обучение в машинном зрении Размер рынка

  • Глобальный рынок глубокого обучения в области машинного зрения оценивался в 5,13 млрд долларов США в 2024 году и, как ожидается, достигнет 13,18 млрд долларов США к 2032 году.
  • В прогнозируемый период с 2025 по 2032 год рынок, вероятно, будет расти среднегодовыми темпами в 12,50%, в первую очередь за счет растущего спроса на автоматизированный контроль качества.
  • Этот рост обусловлен растущим внедрением распознавания изображений на основе искусственного интеллекта и расширением использования систем машинного зрения в таких отраслях, как производство, здравоохранение и автомобилестроение.

Глубокое обучение в анализе рынка машинного зрения

  • Рынок глубокого обучения в области машинного зрения переживает значительный рост, обусловленный растущим спросом на автоматизированный контроль качества, растущим внедрением распознавания изображений на основе искусственного интеллекта и интеграцией машинного зрения с промышленной автоматизацией в различных секторах.
  • Достижения в области высокопроизводительных вычислений, искусственного интеллекта и глубоких нейронных сетей расширяют возможности систем машинного зрения, позволяя принимать решения в режиме реального времени, обнаруживать дефекты и улучшать автоматизацию процессов в обрабатывающей промышленности, здравоохранении и автомобильной промышленности.
  • Северная Америка доминирует на рынке глубокого обучения в области машинного зрения благодаря сильному присутствию ведущих технологических компаний, значительным инвестициям в НИОКР и широкому внедрению автоматизации на основе ИИ в таких отраслях, как автомобилестроение и электроника. 
  • Например, в США такие компании, как NVIDIA и Cognex, разрабатывают системы машинного зрения на базе искусственного интеллекта для улучшения контроля качества и оптимизации производственных процессов.
  • Новые тенденции, такие как обнаружение дефектов с помощью искусственного интеллекта, отслеживание объектов на основе глубокого обучения и интеграция машинного зрения в робототехнику, трансформируют сферу глубокого обучения в машинном зрении, делая его важнейшим компонентом современной промышленной автоматизации и обеспечения качества.

Область применения отчета и глубокое обучение в сегментации рынка машинного зрения  

Атрибуты

Глубокое обучение в машинном зрении. Ключевые идеи рынка

Охваченные сегменты

  • Предлагая : оборудование, программное обеспечение и услуги
  • По применению:  осмотр, анализ изображений, обнаружение аномалий , классификация объектов, отслеживание объектов, подсчет, обнаружение штрихкодов, обнаружение признаков, обнаружение местоположения, оптическое распознавание символов , распознавание лиц, сегментация экземпляров и другие
  • По объекту:  Изображение и Видео
  • По отраслям: электроника, производство, автомобилестроение и транспорт, продукты питания и напитки, аэрокосмическая промышленность, здравоохранение, строительство и материалы, энергетика и другие

Страны, охваченные

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальная часть Азиатско-Тихоокеанского региона

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • Корпорация Cognex (США)
  • Корпорация Intel (США)
  • NATIONAL INSTRUMENTS CORP. (США)
  • SICK AG (Германия)
  • Datalogic SpA (Италия)
  • STEMER IMAGING AG INH ON (Германия)
  • Abto Software (Украина)
  • Zebra Technologies Corp (США)
  • Корпорация Autonics (Южная Корея)
  • Basler AG (Германия)
  • Cyth Systems, Inc. (США)
  • Euresys (Бельгия)
  • IDS Imaging Development Systems GmbH (Германия)
  • LeewayHertz (США)
  • MVTEC SOFTWARE GMBH (Германия)
  • Корпорация Omron (Япония)
  • perClass BV (Нидерланды)
  • Qualitas Technologies (Индия)
  • RSIP Vision (Израиль)
  • USS Vision LLC (США)
  • Viska Automation Systems Ltd. T/A Viska Systems (Ирландия)

Возможности рынка

  • Растущее внедрение систем машинного зрения на базе искусственного интеллекта в здравоохранении
  • Растущее внедрение 3D-системы контроля

Информационные наборы данных с добавленной стоимостью

Помимо аналитических данных о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, географически представленные данные о производстве и мощностях компаний, схемы сетей дистрибьюторов и партнеров, подробный и обновленный анализ ценовых тенденций и анализ дефицита цепочки поставок и спроса.

Тенденции рынка глубокого обучения в машинном зрении

«Прогресс в обнаружении дефектов с помощью ИИ»

  • Основной тенденцией, определяющей рынок глубокого обучения в машинном зрении, является растущее внедрение обнаружения дефектов на основе искусственного интеллекта в таких отраслях, как производство, автомобилестроение и электроника, что обусловлено потребностью в более высокой точности и снижении человеческого фактора.
  • Компании используют алгоритмы глубокого обучения, периферийные вычисления и аналитику машинного зрения в реальном времени для улучшения процессов контроля качества, минимизации дефектов и повышения эффективности производства.
  • Например, в октябре 2023 года корпорация Cognex представила систему технического зрения In-Sight 3800, оснащенную функциями обнаружения дефектов на основе глубокого обучения, что позволяет повысить точность производства и оптимизировать автоматизированный контроль.
  • Передовые технологии, такие как обнаружение аномалий на основе искусственного интеллекта, автоматизированный анализ первопричин и предиктивное обслуживание , интегрируются в системы машинного зрения для оптимизации выявления дефектов и сокращения простоев в работе.
  • Эта тенденция производит революцию в глубоком обучении в отрасли машинного зрения, повышая качество продукции, сокращая отходы и стимулируя внедрение систем визуального контроля на основе искусственного интеллекта, обеспечивая большую эффективность и рентабельность для предприятий.

Динамика рынка глубокого обучения в машинном зрении

Водитель

«Растущее внедрение контроля качества на основе искусственного интеллекта в производстве»

  • Рынок глубокого обучения в области машинного зрения переживает стремительный рост из-за растущей зависимости от контроля качества с использованием искусственного интеллекта в производственных отраслях, что обусловлено потребностью в более высокой точности, эффективности и обнаружении дефектов.
  • Компании интегрируют системы машинного зрения с алгоритмами глубокого обучения для улучшения визуального контроля в реальном времени, снижения человеческого фактора и оптимизации производственных линий для повышения стабильности и качества продукции.
  • Например, в апреле 2024 года компания Siemens заключила партнерское соглашение с NVIDIA с целью интеграции решений машинного зрения на основе искусственного интеллекта в свои производственные процессы, что позволит улучшить автоматизированный контроль качества и свести к минимуму количество производственных дефектов.
  • Системы технического зрения на базе искусственного интеллекта позволяют проводить профилактическое обслуживание, автоматическое обнаружение аномалий и классификацию дефектов в реальном времени, что позволяет сократить эксплуатационные расходы и повысить точность производства.
  • Этот драйвер призван ускорить рост рынка глубокого обучения в области машинного зрения за счет повышения эффективности производства, минимизации простоев и улучшения общего качества продукции в различных отраслях.

Возможность

«Растущее внедрение систем машинного зрения на базе искусственного интеллекта в здравоохранении»

  • Рынок глубокого обучения в области машинного зрения готов к существенному расширению, поскольку отрасль здравоохранения все чаще использует системы машинного зрения на базе искусственного интеллекта для медицинской визуализации , диагностики и роботизированных операций.
  • Спрос на автоматизированный анализ изображений, обнаружение аномалий и мониторинг состояния пациентов в режиме реального времени стимулирует инвестиции в решения для машинного зрения на основе глубокого обучения с целью повышения точности и эффективности медицинских процедур.
  • Например, в январе 2025 года компания GE Healthcare представила систему медицинской визуализации на основе искусственного интеллекта, которая использует глубокое обучение для улучшения раннего выявления таких заболеваний, как рак и неврологические расстройства.
  • Поставщики медицинских услуг и научно-исследовательские институты интегрируют технологии глубокого обучения в патологию, рентгенологию и роботизированную хирургию, чтобы обеспечить точную диагностику и сократить количество человеческих ошибок.
  • Ожидается, что эта возможность будет способствовать долгосрочному росту рынка глубокого обучения в области машинного зрения за счет революционных изменений в медицинской визуализации, улучшения результатов лечения пациентов и содействия развитию инноваций в сфере здравоохранения на основе ИИ.

Сдержанность/Вызов

«Высокие затраты на внедрение и сложности интеграции»

  • Рынок глубокого обучения в области машинного зрения сталкивается со значительными трудностями из-за высокой стоимости внедрения и сложностей, связанных с интеграцией систем машинного зрения на базе ИИ в существующие промышленные рабочие процессы.
  • Необходимость в специализированном оборудовании, обширном обучении работе с данными и передовых вычислительных мощностях делает внедрение решений для машинного зрения на основе глубокого обучения дорогостоящим мероприятием, особенно для малых и средних предприятий (МСП).
  • Например, в июне 2024 года европейский производитель автомобилей столкнулся с задержками при развертывании систем визуального контроля на базе ИИ из-за высоких первоначальных затрат и необходимости переобучения сотрудников работе с инструментами автоматизации на базе ИИ.
  • Кроме того, проблемы совместимости с устаревшими системами, нехватка квалифицированных специалистов в области ИИ и необходимость постоянного совершенствования алгоритмов создают препятствия для беспрепятственного внедрения в различных отраслях.
  • Для преодоления этих проблем потребуются экономически эффективные модели ИИ, масштабируемые решения для глубокого обучения и стратегические партнерства для обеспечения более плавной интеграции и широкого внедрения в промышленных приложениях.

Глубокое обучение в сфере машинного зрения

Рынок сегментирован по принципу предложения, применения, объекта и вертикали.

Сегментация

Субсегментация

Предлагая

  • Аппаратное обеспечение
  • Программное обеспечение
  • Услуги

По применению

  • Инспекция
  • Анализ изображения
  • Обнаружение аномалий
  • Классификация объектов
  • Отслеживание объектов
  • Подсчет
  • Распознавание штрих-кода
  • Обнаружение особенностей
  • Определение местоположения
  • Оптическое распознавание символов
  • Распознавание лиц
  • Сегментация экземпляра
  • Другие

По объекту

  • Изображение
  • Видео

По вертикали

  • Электроника
  • Производство
  • Автомобили и транспорт
  • Еда и напитки
  • Аэрокосмическая промышленность
  • Здравоохранение
  • Строительство и материалы
  • Власть
  • Другие

Глубокое обучение в региональном анализе рынка машинного зрения

«Северная Америка — доминирующий регион на рынке глубокого обучения в области машинного зрения»

  • Северная Америка может похвастаться высокоразвитой экосистемой искусственного интеллекта и автоматизации, что ускоряет внедрение технологий глубокого обучения в приложениях машинного зрения.
  • Устоявшиеся промышленные и производственные секторы региона стимулируют спрос на автоматизированные решения по контролю качества, обнаружению дефектов и предиктивному обслуживанию на основе глубокого обучения.
  • Крупнейшие компании в сфере искусственного интеллекта и машинного зрения, а также ведущие научно-исследовательские институты вносят вклад в непрерывные инновации и широкомасштабное внедрение систем машинного зрения на основе глубокого обучения.
  • В совокупности эти факторы позиционируют Северную Америку как доминирующий рынок, способствующий инновациям, инвестициям и устойчивому расширению в отрасли глубокого обучения в области машинного зрения.

«Прогнозируется, что в Северной Америке будут зарегистрированы самые высокие темпы роста»

  • Рост внедрения автоматизации и систем контроля качества на основе искусственного интеллекта в таких отраслях, как производство, здравоохранение и автомобилестроение, стимулирует рост рынка.
  • Расширение применения глубокого обучения в машинном зрении, включая обнаружение дефектов, распознавание объектов и предиктивное обслуживание, обуславливает спрос на передовые решения.
  • Правительственные инициативы и инвестиции в «умные» фабрики, Индустрию 4.0 и промышленную автоматизацию на основе искусственного интеллекта ускоряют внедрение технологий машинного зрения.
  • В совокупности эти факторы позиционируют Северную Америку как самый быстрорастущий регион на рынке глубокого обучения в области машинного зрения, способствуя инновациям и широкому внедрению в различных отраслях.

Глубокое обучение в машинном зрении Доля рынка

Конкурентная среда рынка содержит сведения о конкурентах. Включены сведения о компании, ее финансах, полученном доходе, рыночном потенциале, инвестициях в исследования и разработки, новых рыночных инициативах, глобальном присутствии, производственных площадках и объектах, производственных мощностях, сильных и слабых сторонах компании, запуске продукта, широте и широте продукта, доминировании приложений. Приведенные выше данные касаются только фокуса компаний на рынке.

Основными лидерами рынка, работающими на рынке, являются:

  • Корпорация Cognex (США)
  • Корпорация Intel (США)
  • NATIONAL INSTRUMENTS CORP. (США)
  • SICK AG (Германия)
  • Datalogic SpA (Италия)
  • STEMER IMAGING AG INH ON (Германия)
  • Abto Software (Украина)
  • Zebra Technologies Corp (США)
  • Корпорация Autonics (Южная Корея)
  • Basler AG (Германия)
  • Cyth Systems, Inc. (США)
  • Euresys (Бельгия)
  • IDS Imaging Development Systems GmbH (Германия)
  • LeewayHertz (США)
  • MVTEC SOFTWARE GMBH (Германия)
  • Корпорация Omron (Япония)
  • perClass BV (Нидерланды)
  • Qualitas Technologies (Индия)
  • RSIP Vision (Израиль)
  • USS Vision LLC (США)
  • Viska Automation Systems Ltd. T/A Viska Systems (Ирландия)

Последние разработки на мировом рынке глубокого обучения в области машинного зрения

  • В январе 2025 года корпорация NVIDIA усилила сотрудничество с ключевыми автомобильными компаниями, включая Toyota, Aurora и Continental, для ускорения разработки высокоавтоматизированных и автономных автопарков. Используя передовые возможности обработки изображений на основе ИИ, NVIDIA стремится повысить безопасность и функциональность систем беспилотного вождения, укрепляя свои позиции лидера в области технологий автономных транспортных средств. Ожидается, что это расширение приведет к значительному прогрессу в решениях для мобильности на основе ИИ, формируя будущее автономного транспорта.
  • В мае 2024 года компания Avnet, Inc. представила комплект разработки QCS6490 Vision-AI, позволяющий инженерным группам быстро создавать прототипы высокопроизводительных встроенных продуктов Edge AI с возможностями многокамерной съемки. Комплект работает на энергоэффективном вычислительном модуле MSC SM2S-QCS6490 SMARC на базе процессора Qualcomm QCS6490, что способствует более быстрому развертыванию решений для машинного зрения на базе ИИ в различных отраслях. Это нововведение призвано ускорить внедрение приложений машинного зрения на базе ИИ, повышая эффективность в различных секторах
  • В мае 2024 года корпорация Microsoft представила GPT-4 Turbo с Vision, многомодальную модель ИИ, предназначенную для обработки как текстовых, так и графических входных данных. Эта модель улучшает различные приложения, обеспечивая расширенный анализ изображений и видео, генерацию текста, оптическое распознавание символов (OCR) и заземление объектов, что способствует внедрению автоматизации на основе ИИ в различных секторах. Ожидается, что внедрение этой модели произведет революцию в обработке изображений на основе ИИ, улучшив бизнес-операции и возможности автоматизации.
  • В апреле 2024 года корпорация Cognex запустила систему 3D Vision In-Sight L38, интегрирующую ИИ с технологиями 2D и 3D Vision для улучшения процессов инспекции и измерения. Создавая 2D-изображения, встроенные в 3D-данные, система упрощает обучение, повышает точность обнаружения признаков и обеспечивает единообразные результаты инспекции, расширяя возможности промышленной автоматизации. Это достижение нацелено на трансформацию процессов контроля качества и производства, повышая точность и эффективность в промышленных приложениях.
  • В апреле 2024 года IBM представила программную платформу IBM Z IntelliMagic Vision для z/OS — решение для анализа производительности систем IBM Z. Благодаря настраиваемым визуализациям без кода и гибким инструментам анализа данных платформа позволяет аналитикам выявлять потенциальные риски и оптимизировать рабочие нагрузки, повышая эффективность и надежность корпоративных ИТ-операций. Этот запуск подчеркивает приверженность IBM повышению производительности корпоративных ИТ-систем, обеспечивая большую операционную устойчивость и эффективность

SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Глобальная сегментация рынка глубокого обучения в машинном зрении по предложению (оборудование, программное обеспечение и услуги), применению (инспекция, анализ изображений, обнаружение аномалий, классификация объектов, отслеживание объектов, подсчет, обнаружение штрихкодов, обнаружение признаков, обнаружение местоположения, оптическое распознавание символов, распознавание лиц, сегментация экземпляров и другие), объекту (изображения и видео), вертикали (электроника, производство, автомобилестроение и транспорт, продукты питания и напитки, аэрокосмическая промышленность, здравоохранение, строительство и материалы, энергетика и другие) — отраслевые тенденции и прогноз до 2032 года .
Размер Отчет об анализе размера, доли и тенденций мирового рынка глубокого обучения в машинном зрении — обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 5.13 USD Billion долларов США.
Ожидается, что Отчет об анализе размера, доли и тенденций мирового рынка глубокого обучения в машинном зрении — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 12.5% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают Cognex Corporation, Intel Corporation, NATIONAL INSTRUMENTS CORP., SICK AG, Datalogic S.p.A..
Testimonial