Global Deep Learning In Machine Vision Market
Размер рынка в млрд долларов США
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 5.13 Billion |
![]() |
USD 13.18 Billion |
![]() |
|
![]() |
|
Глобальная сегментация рынка глубокого обучения в машинном зрении по предложению (оборудование, программное обеспечение и услуги), применению (инспекция, анализ изображений, обнаружение аномалий, классификация объектов, отслеживание объектов, подсчет, обнаружение штрихкодов, обнаружение признаков, обнаружение местоположения, оптическое распознавание символов, распознавание лиц, сегментация экземпляров и другие), объекту (изображения и видео), вертикали (электроника, производство, автомобилестроение и транспорт, продукты питания и напитки, аэрокосмическая промышленность, здравоохранение, строительство и материалы, энергетика и другие) — отраслевые тенденции и прогноз до 2032 года
Глубокое обучение в машинном зрении Размер рынка
- Глобальный рынок глубокого обучения в области машинного зрения оценивался в 5,13 млрд долларов США в 2024 году и, как ожидается, достигнет 13,18 млрд долларов США к 2032 году.
- В прогнозируемый период с 2025 по 2032 год рынок, вероятно, будет расти среднегодовыми темпами в 12,50%, в первую очередь за счет растущего спроса на автоматизированный контроль качества.
- Этот рост обусловлен растущим внедрением распознавания изображений на основе искусственного интеллекта и расширением использования систем машинного зрения в таких отраслях, как производство, здравоохранение и автомобилестроение.
Глубокое обучение в анализе рынка машинного зрения
- Рынок глубокого обучения в области машинного зрения переживает значительный рост, обусловленный растущим спросом на автоматизированный контроль качества, растущим внедрением распознавания изображений на основе искусственного интеллекта и интеграцией машинного зрения с промышленной автоматизацией в различных секторах.
- Достижения в области высокопроизводительных вычислений, искусственного интеллекта и глубоких нейронных сетей расширяют возможности систем машинного зрения, позволяя принимать решения в режиме реального времени, обнаруживать дефекты и улучшать автоматизацию процессов в обрабатывающей промышленности, здравоохранении и автомобильной промышленности.
- Северная Америка доминирует на рынке глубокого обучения в области машинного зрения благодаря сильному присутствию ведущих технологических компаний, значительным инвестициям в НИОКР и широкому внедрению автоматизации на основе ИИ в таких отраслях, как автомобилестроение и электроника.
- Например, в США такие компании, как NVIDIA и Cognex, разрабатывают системы машинного зрения на базе искусственного интеллекта для улучшения контроля качества и оптимизации производственных процессов.
- Новые тенденции, такие как обнаружение дефектов с помощью искусственного интеллекта, отслеживание объектов на основе глубокого обучения и интеграция машинного зрения в робототехнику, трансформируют сферу глубокого обучения в машинном зрении, делая его важнейшим компонентом современной промышленной автоматизации и обеспечения качества.
Область применения отчета и глубокое обучение в сегментации рынка машинного зрения
Атрибуты |
Глубокое обучение в машинном зрении. Ключевые идеи рынка |
Охваченные сегменты |
|
Страны, охваченные |
Северная Америка
Европа
Азиатско-Тихоокеанский регион
Ближний Восток и Африка
Южная Америка
|
Ключевые игроки рынка |
|
Возможности рынка |
|
Информационные наборы данных с добавленной стоимостью |
Помимо аналитических данных о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, географически представленные данные о производстве и мощностях компаний, схемы сетей дистрибьюторов и партнеров, подробный и обновленный анализ ценовых тенденций и анализ дефицита цепочки поставок и спроса. |
Тенденции рынка глубокого обучения в машинном зрении
«Прогресс в обнаружении дефектов с помощью ИИ»
- Основной тенденцией, определяющей рынок глубокого обучения в машинном зрении, является растущее внедрение обнаружения дефектов на основе искусственного интеллекта в таких отраслях, как производство, автомобилестроение и электроника, что обусловлено потребностью в более высокой точности и снижении человеческого фактора.
- Компании используют алгоритмы глубокого обучения, периферийные вычисления и аналитику машинного зрения в реальном времени для улучшения процессов контроля качества, минимизации дефектов и повышения эффективности производства.
- Например, в октябре 2023 года корпорация Cognex представила систему технического зрения In-Sight 3800, оснащенную функциями обнаружения дефектов на основе глубокого обучения, что позволяет повысить точность производства и оптимизировать автоматизированный контроль.
- Передовые технологии, такие как обнаружение аномалий на основе искусственного интеллекта, автоматизированный анализ первопричин и предиктивное обслуживание , интегрируются в системы машинного зрения для оптимизации выявления дефектов и сокращения простоев в работе.
- Эта тенденция производит революцию в глубоком обучении в отрасли машинного зрения, повышая качество продукции, сокращая отходы и стимулируя внедрение систем визуального контроля на основе искусственного интеллекта, обеспечивая большую эффективность и рентабельность для предприятий.
Динамика рынка глубокого обучения в машинном зрении
Водитель
«Растущее внедрение контроля качества на основе искусственного интеллекта в производстве»
- Рынок глубокого обучения в области машинного зрения переживает стремительный рост из-за растущей зависимости от контроля качества с использованием искусственного интеллекта в производственных отраслях, что обусловлено потребностью в более высокой точности, эффективности и обнаружении дефектов.
- Компании интегрируют системы машинного зрения с алгоритмами глубокого обучения для улучшения визуального контроля в реальном времени, снижения человеческого фактора и оптимизации производственных линий для повышения стабильности и качества продукции.
- Например, в апреле 2024 года компания Siemens заключила партнерское соглашение с NVIDIA с целью интеграции решений машинного зрения на основе искусственного интеллекта в свои производственные процессы, что позволит улучшить автоматизированный контроль качества и свести к минимуму количество производственных дефектов.
- Системы технического зрения на базе искусственного интеллекта позволяют проводить профилактическое обслуживание, автоматическое обнаружение аномалий и классификацию дефектов в реальном времени, что позволяет сократить эксплуатационные расходы и повысить точность производства.
- Этот драйвер призван ускорить рост рынка глубокого обучения в области машинного зрения за счет повышения эффективности производства, минимизации простоев и улучшения общего качества продукции в различных отраслях.
Возможность
«Растущее внедрение систем машинного зрения на базе искусственного интеллекта в здравоохранении»
- Рынок глубокого обучения в области машинного зрения готов к существенному расширению, поскольку отрасль здравоохранения все чаще использует системы машинного зрения на базе искусственного интеллекта для медицинской визуализации , диагностики и роботизированных операций.
- Спрос на автоматизированный анализ изображений, обнаружение аномалий и мониторинг состояния пациентов в режиме реального времени стимулирует инвестиции в решения для машинного зрения на основе глубокого обучения с целью повышения точности и эффективности медицинских процедур.
- Например, в январе 2025 года компания GE Healthcare представила систему медицинской визуализации на основе искусственного интеллекта, которая использует глубокое обучение для улучшения раннего выявления таких заболеваний, как рак и неврологические расстройства.
- Поставщики медицинских услуг и научно-исследовательские институты интегрируют технологии глубокого обучения в патологию, рентгенологию и роботизированную хирургию, чтобы обеспечить точную диагностику и сократить количество человеческих ошибок.
- Ожидается, что эта возможность будет способствовать долгосрочному росту рынка глубокого обучения в области машинного зрения за счет революционных изменений в медицинской визуализации, улучшения результатов лечения пациентов и содействия развитию инноваций в сфере здравоохранения на основе ИИ.
Сдержанность/Вызов
«Высокие затраты на внедрение и сложности интеграции»
- Рынок глубокого обучения в области машинного зрения сталкивается со значительными трудностями из-за высокой стоимости внедрения и сложностей, связанных с интеграцией систем машинного зрения на базе ИИ в существующие промышленные рабочие процессы.
- Необходимость в специализированном оборудовании, обширном обучении работе с данными и передовых вычислительных мощностях делает внедрение решений для машинного зрения на основе глубокого обучения дорогостоящим мероприятием, особенно для малых и средних предприятий (МСП).
- Например, в июне 2024 года европейский производитель автомобилей столкнулся с задержками при развертывании систем визуального контроля на базе ИИ из-за высоких первоначальных затрат и необходимости переобучения сотрудников работе с инструментами автоматизации на базе ИИ.
- Кроме того, проблемы совместимости с устаревшими системами, нехватка квалифицированных специалистов в области ИИ и необходимость постоянного совершенствования алгоритмов создают препятствия для беспрепятственного внедрения в различных отраслях.
- Для преодоления этих проблем потребуются экономически эффективные модели ИИ, масштабируемые решения для глубокого обучения и стратегические партнерства для обеспечения более плавной интеграции и широкого внедрения в промышленных приложениях.
Глубокое обучение в сфере машинного зрения
Рынок сегментирован по принципу предложения, применения, объекта и вертикали.
Сегментация |
Субсегментация |
Предлагая |
|
По применению |
|
По объекту |
|
По вертикали |
|
Глубокое обучение в региональном анализе рынка машинного зрения
«Северная Америка — доминирующий регион на рынке глубокого обучения в области машинного зрения»
- Северная Америка может похвастаться высокоразвитой экосистемой искусственного интеллекта и автоматизации, что ускоряет внедрение технологий глубокого обучения в приложениях машинного зрения.
- Устоявшиеся промышленные и производственные секторы региона стимулируют спрос на автоматизированные решения по контролю качества, обнаружению дефектов и предиктивному обслуживанию на основе глубокого обучения.
- Крупнейшие компании в сфере искусственного интеллекта и машинного зрения, а также ведущие научно-исследовательские институты вносят вклад в непрерывные инновации и широкомасштабное внедрение систем машинного зрения на основе глубокого обучения.
- В совокупности эти факторы позиционируют Северную Америку как доминирующий рынок, способствующий инновациям, инвестициям и устойчивому расширению в отрасли глубокого обучения в области машинного зрения.
«Прогнозируется, что в Северной Америке будут зарегистрированы самые высокие темпы роста»
- Рост внедрения автоматизации и систем контроля качества на основе искусственного интеллекта в таких отраслях, как производство, здравоохранение и автомобилестроение, стимулирует рост рынка.
- Расширение применения глубокого обучения в машинном зрении, включая обнаружение дефектов, распознавание объектов и предиктивное обслуживание, обуславливает спрос на передовые решения.
- Правительственные инициативы и инвестиции в «умные» фабрики, Индустрию 4.0 и промышленную автоматизацию на основе искусственного интеллекта ускоряют внедрение технологий машинного зрения.
- В совокупности эти факторы позиционируют Северную Америку как самый быстрорастущий регион на рынке глубокого обучения в области машинного зрения, способствуя инновациям и широкому внедрению в различных отраслях.
Глубокое обучение в машинном зрении Доля рынка
Конкурентная среда рынка содержит сведения о конкурентах. Включены сведения о компании, ее финансах, полученном доходе, рыночном потенциале, инвестициях в исследования и разработки, новых рыночных инициативах, глобальном присутствии, производственных площадках и объектах, производственных мощностях, сильных и слабых сторонах компании, запуске продукта, широте и широте продукта, доминировании приложений. Приведенные выше данные касаются только фокуса компаний на рынке.
Основными лидерами рынка, работающими на рынке, являются:
- Корпорация Cognex (США)
- Корпорация Intel (США)
- NATIONAL INSTRUMENTS CORP. (США)
- SICK AG (Германия)
- Datalogic SpA (Италия)
- STEMER IMAGING AG INH ON (Германия)
- Abto Software (Украина)
- Zebra Technologies Corp (США)
- Корпорация Autonics (Южная Корея)
- Basler AG (Германия)
- Cyth Systems, Inc. (США)
- Euresys (Бельгия)
- IDS Imaging Development Systems GmbH (Германия)
- LeewayHertz (США)
- MVTEC SOFTWARE GMBH (Германия)
- Корпорация Omron (Япония)
- perClass BV (Нидерланды)
- Qualitas Technologies (Индия)
- RSIP Vision (Израиль)
- USS Vision LLC (США)
- Viska Automation Systems Ltd. T/A Viska Systems (Ирландия)
Последние разработки на мировом рынке глубокого обучения в области машинного зрения
- В январе 2025 года корпорация NVIDIA усилила сотрудничество с ключевыми автомобильными компаниями, включая Toyota, Aurora и Continental, для ускорения разработки высокоавтоматизированных и автономных автопарков. Используя передовые возможности обработки изображений на основе ИИ, NVIDIA стремится повысить безопасность и функциональность систем беспилотного вождения, укрепляя свои позиции лидера в области технологий автономных транспортных средств. Ожидается, что это расширение приведет к значительному прогрессу в решениях для мобильности на основе ИИ, формируя будущее автономного транспорта.
- В мае 2024 года компания Avnet, Inc. представила комплект разработки QCS6490 Vision-AI, позволяющий инженерным группам быстро создавать прототипы высокопроизводительных встроенных продуктов Edge AI с возможностями многокамерной съемки. Комплект работает на энергоэффективном вычислительном модуле MSC SM2S-QCS6490 SMARC на базе процессора Qualcomm QCS6490, что способствует более быстрому развертыванию решений для машинного зрения на базе ИИ в различных отраслях. Это нововведение призвано ускорить внедрение приложений машинного зрения на базе ИИ, повышая эффективность в различных секторах
- В мае 2024 года корпорация Microsoft представила GPT-4 Turbo с Vision, многомодальную модель ИИ, предназначенную для обработки как текстовых, так и графических входных данных. Эта модель улучшает различные приложения, обеспечивая расширенный анализ изображений и видео, генерацию текста, оптическое распознавание символов (OCR) и заземление объектов, что способствует внедрению автоматизации на основе ИИ в различных секторах. Ожидается, что внедрение этой модели произведет революцию в обработке изображений на основе ИИ, улучшив бизнес-операции и возможности автоматизации.
- В апреле 2024 года корпорация Cognex запустила систему 3D Vision In-Sight L38, интегрирующую ИИ с технологиями 2D и 3D Vision для улучшения процессов инспекции и измерения. Создавая 2D-изображения, встроенные в 3D-данные, система упрощает обучение, повышает точность обнаружения признаков и обеспечивает единообразные результаты инспекции, расширяя возможности промышленной автоматизации. Это достижение нацелено на трансформацию процессов контроля качества и производства, повышая точность и эффективность в промышленных приложениях.
- В апреле 2024 года IBM представила программную платформу IBM Z IntelliMagic Vision для z/OS — решение для анализа производительности систем IBM Z. Благодаря настраиваемым визуализациям без кода и гибким инструментам анализа данных платформа позволяет аналитикам выявлять потенциальные риски и оптимизировать рабочие нагрузки, повышая эффективность и надежность корпоративных ИТ-операций. Этот запуск подчеркивает приверженность IBM повышению производительности корпоративных ИТ-систем, обеспечивая большую операционную устойчивость и эффективность
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.