Отчет об анализе размера, доли и тенденций рынка нейронных сетей глубокого обучения в Европе — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Отчет об анализе размера, доли и тенденций рынка нейронных сетей глубокого обучения в Европе — обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Oct 2021
  • Europe
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Europe Deep Learning Neural Networks Dnns Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 11.50 Billion USD 37.96 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 11.50 Billion
Diagram Размер рынка (прогнозируемый год)
USD 37.96 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • ALYUDA analysisLLC
  • ALPHABET INC.
  • IBM
  • Neural Technologies restricted
  • NEURODIMENSIONInc.

Сегментация рынка нейронных сетей глубокого обучения (DNN) в Европе по типу продукта (программные платформы, аппаратные ускорители, услуги), технологии (CNN, RNN, GAN, Transformers и другие), применению (диагностика в здравоохранении, автономные транспортные средства, финансовые услуги, розничная торговля, производство и другие), развертыванию (облачное, локальное), конечному пользователю (предприятия, поставщики медицинских услуг, производители автомобилей, финансовые учреждения, государственные учреждения и другие) — отраслевые тенденции и прогноз до 2032 г.

Глубокое обучение нейронных сетей (DNN) Market Z

Размер рынка нейронных сетей глубокого обучения (DNN)

  • Объем европейского рынка нейронных сетей глубокого обучения (DNN) оценивался в 11,50 млрд долларов США в 2024 году и, как ожидается ,  достигнет  37,96 млрд долларов США к 2032 году при среднегодовом темпе роста 16,1% в течение прогнозируемого периода.
  • Этот существенный рост обусловлен в первую очередь широким внедрением технологий искусственного интеллекта (ИИ), увеличением инвестиций в инфраструктуру машинного обучения и растущим спросом на расширенную аналитику данных в таких отраслях, как здравоохранение, автомобилестроение, финансы и розничная торговля. Распространение больших данных в сочетании с достижениями в области вычислительной мощности еще больше ускоряет расширение рынка.
  • Лидерство региона в области технологических инноваций, подкрепленное значительными инвестициями в исследования и разработки (НИОКР), правительственными инициативами, способствующими внедрению ИИ, и сильным присутствием ведущих технологических компаний, является ключевым фактором восходящей траектории рынка. Кроме того, растущая интеграция DNN в автономные системы, интеллектуальное производство и персонализированные потребительские услуги обуславливает значительный спрос на решения глубокого обучения по всей Европе.

Анализ рынка нейронных сетей глубокого обучения (DNN)

  • Глубокие нейронные сети (DNN) — это передовые алгоритмы искусственного интеллекта, разработанные для имитации процессов человеческого мозга, позволяющие машинам обрабатывать огромные наборы данных, распознавать закономерности и принимать решения на основе данных. Эти системы, включая программные платформы, аппаратные ускорители, такие как GPU и TPU, а также профессиональные услуги, имеют решающее значение для приложений в области диагностики в здравоохранении, автономных транспортных средств, финансового моделирования, персонализации розничной торговли и автоматизации производства.
  • Рынок в значительной степени подпитывается доминированием Европы в области инноваций в области ИИ, при этом на регион придется более 40% мировых расходов на НИОКР в области ИИ в 2023 году, во главе с США. Быстрое внедрение автономных транспортных средств, а к 2027 году на дорогах Германии, по прогнозам, будет более 1,2 млн беспилотных автомобилей, стимулирует спрос на DNN в обработке изображений и данных датчиков в реальном времени.
  • Технологические достижения, такие как модели на основе трансформаторов и генеративный ИИ, расширяют возможности DNN, позволяя применять их в обработке естественного языка (NLP), компьютерном зрении и предиктивной аналитике. Инициативы правительства Германии в области ИИ, такие как Национальный ресурс исследований ИИ (NAIRR), способствуют инновациям и поддерживают рост рынка.
  • Германия доминирует на рынке с убедительной долей выручки в 42,1% в 2024 году, оцениваемой в 10,29 млрд долларов США, что обусловлено ее надежной технологической экосистемой, присутствием таких ключевых игроков, как NVIDIA и Google, а также значительными инвестициями в инфраструктуру ИИ.
  • Ожидается, что самые быстрые темпы роста будут наблюдаться во Франции: прогнозируемый среднегодовой темп роста составит 16,8% в период с 2025 по 2032 год, что обусловлено государственной поддержкой исследований в области ИИ и растущим внедрением технологий в секторах здравоохранения и автомобилестроения.
  • Среди типов продуктов сегмент программных платформ занимал наибольшую долю рынка — 48,7% в 2024 году, что объясняется широким использованием фреймворков глубокого обучения, таких как TensorFlow и PyTorch, в корпоративных и исследовательских приложениях.

Область применения отчета и сегментация европейского рынка нейронных сетей глубокого обучения (DNN)    

Атрибуты

Ключевые данные о рынке нейронных сетей глубокого обучения (DNN) в Европе

Охваченные сегменты

  • По типу продукта : программные платформы, аппаратные ускорители, услуги
  • По технологии : сверточные нейронные сети (CNN), рекуррентные нейронные сети (RNN), генеративно-состязательные сети (GAN), трансформаторы, другие
  • По применению : Диагностика в здравоохранении, Автономные транспортные средства, Финансовые услуги, Розничная торговля и электронная коммерция, Автоматизация производства, Другое
  • По развертыванию : облачное, локальное
  • По конечному пользователю : предприятия, поставщики медицинских услуг, производители автомобилей, финансовые учреждения, государственные учреждения, другие

Страны, охваченные

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция

Ключевые игроки рынка

  • Корпорация NVIDIA (США)
  • Google LLC (США)
  • Корпорация Microsoft (США)
  • Amazon Web Services, Inc. (США)
  • Корпорация Intel (США)
  • Корпорация IBM (США)
  • Advanced Micro Devices, Inc. (AMD) (США)
  • Мета ИИ (США)
  • Qualcomm Incorporated (США)
  • Корпорация Oracle (США)
  • SAS Institute Inc. (США)
  • Palantir Technologies Inc. (США)
  • H2O.ai (США)
  • DataRobot, Inc. (США)
  • Cerebras Systems Inc. (США)
  • xAI (США)

Возможности рынка

  • Быстрое распространение приложений на базе искусственного интеллекта в автономных транспортных средствах, интеллектуальных системах здравоохранения и персонализированном розничном обслуживании по всей Европе.
  • Растущий спрос на облачные решения DNN, обеспечивающие масштабируемое и экономически эффективное развертывание ИИ для предприятий и малого бизнеса.

Информационные наборы данных с добавленной стоимостью

Помимо аналитических данных о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, анализ цен, анализ доли бренда, опрос потребителей, демографический анализ, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу.

Тенденции рынка нейронных сетей глубокого обучения (DNN)

« Генеративный ИИ, модели-трансформеры, периферийные вычисления и устойчивые решения ИИ »

  • Внедрение генеративного ИИ и моделей на основе трансформаторов является заметной тенденцией: более 30% новых развертываний DNN в 2024 году будут использовать эти технологии для приложений в области обработки естественного языка, генерации изображений и производства креативного контента, улучшая пользовательский опыт в розничной торговле и СМИ.
  • Развитие периферийных вычислений (25% новых решений DNN в 2024 году будут разработаны для обработки на устройствах) набирает популярность в автономных транспортных средствах и приложениях Интернета вещей, сокращая задержки и улучшая процесс принятия решений в режиме реального времени.
  • Растет внимание к устойчивым решениям на основе ИИ: в 2024 году 15% новых аппаратных ускорителей будут сертифицированы на предмет энергоэффективности, что соответствует европейским инициативам в области экологически чистых технологий и снижает воздействие вычислений на основе ИИ на окружающую среду.
  • Внедрение облачных платформ DNN стремительно растет: в 2024 году темпы внедрения вырастут на 20 %, чему способствуют масштабируемые и гибкие решения, предлагаемые такими поставщиками, как AWS, Microsoft Azure и Google Cloud.
  • Интеграция глубоких нейронных сетей с экосистемами Интернета вещей, особенно в интеллектуальном производстве и здравоохранении, расширяется: 18% новых решений в 2024 году будут предназначены для аналитики данных в реальном времени и автоматизации в этих секторах.
  • Растущий потребительский спрос на персонализированные услуги на базе искусственного интеллекта, такие как рекомендательные системы в розничной торговле и предиктивная диагностика в здравоохранении, стимулирует инновации в приложениях DNN по всей Европе.

Динамика рынка нейронных сетей глубокого обучения (DNN)

Водитель

«Внедрение ИИ, распространение больших данных, автономные системы, государственная поддержка и технологические достижения»

  • Широкое внедрение технологий искусственного интеллекта в различных отраслях промышленности (по прогнозам, к 2027 году объем европейского рынка искусственного интеллекта достигнет 200 млрд долларов США) обуславливает значительный спрос на глубокие нейронные сети в таких приложениях, как диагностика в здравоохранении, автономное вождение и финансовое моделирование.
  • Распространение больших данных (в 2023 году европейские предприятия ежедневно генерировали более 2,5 эксабайт данных) обусловливает необходимость использования современных глубоких нейронных сетей для обработки и анализа сложных наборов данных с целью получения практических сведений.
  • Стремительное развитие автономных транспортных средств (по прогнозам, к 2027 году на дорогах Германии будет более 1,2 млн беспилотных автомобилей) увеличивает спрос на глубокие нейронные сети в области обработки изображений в реальном времени, объединения данных датчиков и алгоритмов принятия решений.
  • Правительственные инициативы, такие как Французская национальная инициатива в области ИИ и Панканадская стратегия в области ИИ, обеспечивают существенное финансирование и нормативную поддержку исследований в области ИИ, способствуя инновациям и внедрению глубоких нейронных сетей в различных отраслях.
  • Достижения в области аппаратных ускорителей, такие как графические процессоры NVIDIA A100 и TPU Google, повышают производительность DNN, обеспечивая более быстрое обучение и вывод сложных моделей в центрах обработки данных и на периферийных устройствах.
  • Растущий спрос на персонализированный потребительский опыт (65% розничных торговцев Германии в 2023 году внедрят системы рекомендаций на основе искусственного интеллекта) стимулирует интеграцию глубоких нейронных сетей в приложения для розничной торговли, электронной коммерции и обслуживания клиентов.

Сдержанность/Вызов

« Высокие затраты на разработку, проблемы конфиденциальности данных, нехватка квалифицированных кадров, потребление энергии и сложности нормативного регулирования »

  • Высокая стоимость разработки и развертывания глубоких нейронных сетей, особенно для специализированных аппаратных ускорителей и крупномасштабных моделей ИИ, создает проблему для их внедрения среди малых и средних предприятий, ограничивая масштабируемость рынка в сегментах, чувствительных к затратам.
  • Проблемы конфиденциальности данных, обусловленные такими нормативными актами, как Закон Калифорнии о защите прав потребителей (CCPA) и Закон Франции о защите личной информации и электронных документов (PIPEDA), увеличивают расходы на соблюдение требований и усложняют работу поставщиков DNN с конфиденциальными данными.
  • Нехватка квалифицированных специалистов в области искусственного интеллекта и глубокого обучения (по прогнозам, к 2026 году в Европе будет не хватать 250 000 специалистов в области искусственного интеллекта) создает проблемы для внедрения, обслуживания и инноваций в области технологий глубокой нейронной сети.
  • Высокое энергопотребление процессов обучения и вывода DNN, при этом крупномасштабные модели потребляют до 500 МВт·ч в год, вызывает опасения относительно устойчивости и эксплуатационных расходов, особенно в центрах обработки данных.
  • Быстрое устаревание технологий, обусловленное постоянным совершенствованием алгоритмов и оборудования ИИ, заставляет компании вкладывать значительные средства в НИОКР, что снижает прибыльность мелких игроков и ограничивает долгосрочные инновации.
  • Сложности нормативного регулирования, такие как различия в структурах управления ИИ в Германии и Франции, создают проблемы для стандартизированного развертывания DNN и соответствия требованиям, увеличивая эксплуатационные расходы для поставщиков.

Европейский рынок нейронных сетей глубокого обучения (DNN)

Европейский рынок нейронных сетей глубокого обучения (DNN) сегментирован по типу продукта, технологии, применению, развертыванию и конечному пользователю, что обеспечивает комплексное понимание динамики рынка и возможностей роста.

  • По типу продукта

На основе типа продукта рынок сегментируется на программные платформы, аппаратные ускорители и услуги. Сегмент программных платформ доминировал с долей выручки 48,7% в 2024 году, оцененной в 6,09 млрд долларов США, что обусловлено широким использованием таких фреймворков, как TensorFlow, PyTorch и Keras в корпоративных и исследовательских приложениях. Ожидается, что сегмент услуг будет расти с самым быстрым среднегодовым темпом роста в 16,5% с 2025 по 2032 год, подпитываемым спросом на услуги по консультированию и внедрению ИИ.

По технологии

На основе технологий рынок сегментирован на сверточные нейронные сети (CNN), рекуррентные нейронные сети (RNN), генеративно-состязательные сети (GAN), трансформеры и другие. Сегмент CNN занимал наибольшую долю в 40,2% в 2024 году, что обусловлено его использованием в распознавании изображений и автономных транспортных средствах. Ожидается, что сегмент трансформеров будет расти с самым быстрым среднегодовым темпом роста в 17,1% с 2025 по 2032 год, подпитываемым достижениями в области обработки естественного языка и генеративного ИИ.

По применению

На основе сферы применения рынок сегментирован на диагностику в здравоохранении, автономные транспортные средства, финансовые услуги, розничную и электронную коммерцию, автоматизацию производства и другие. Сегмент диагностики в здравоохранении принес наибольшую долю выручки в 35,6% в 2024 году, что обусловлено медицинской визуализацией на базе ИИ и предиктивной диагностикой. Ожидается, что сегмент автономных транспортных средств будет расти с самым быстрым среднегодовым темпом роста в 18,3% в период с 2025 по 2032 год, подпитываемым разработкой беспилотных автомобилей.

По развертыванию

На основе развертывания рынок сегментируется на облачный и локальный. Облачный сегмент занимал значительную долю в 60,8% в 2024 году, что обусловлено масштабируемыми решениями, предлагаемыми AWS, Azure и Google Cloud. Ожидается, что облачный сегмент будет расти с самым быстрым среднегодовым темпом роста в 16,9% с 2025 по 2032 год, подпитываемым спросом на гибкое и экономически эффективное развертывание ИИ.

Конечным пользователем


На основе конечного пользователя рынок сегментирован на предприятия, поставщиков медицинских услуг, производителей автомобилей, финансовые учреждения, государственные учреждения и другие. Сегмент предприятий доминировал с долей выручки 42,1% в 2024 году, что обусловлено внедрением ИИ в бизнес-аналитику. Ожидается, что сегмент поставщиков медицинских услуг будет расти с самым быстрым среднегодовым темпом роста в 17,4% с 2025 по 2032 год, подпитываемым диагностикой на основе ИИ и персонализированной медициной.

Региональный анализ рынка нейронных сетей глубокого обучения (DNN)

Обзор рынка нейронных сетей глубокого обучения (DNN) в Германии

Германия лидировала на рынке с внушительной долей выручки в 42,1% в 2024 году, оцененной в 10,29 млрд долларов США, что обусловлено ее надежной технологической экосистемой, присутствием таких ключевых игроков, как NVIDIA, Google и Microsoft, а также значительными инвестициями в инфраструктуру ИИ. Лидерство страны в области автономных транспортных средств, ИИ в здравоохранении и финансовых услуг в сочетании с государственной поддержкой через Национальную инициативу ИИ укрепляет ее доминирование.

Обзор рынка нейронных сетей глубокого обучения (DNN) во Франции

Франция готова расти с самым быстрым среднегодовым темпом роста в 16,8% с 2025 по 2032 год, благодаря правительственным инициативам, таким как Панканадская стратегия ИИ, которая поддерживает исследования и внедрение ИИ в здравоохранении, автомобилестроении и производстве. Франция занимала 12,1% рынка в 2024 году, с растущим внедрением DNN в умных городах и медицинской диагностике.

Обзор рынка нейронных сетей глубокого обучения (DNN) в Великобритании

Доля рынка Великобритании в 2024 году составила 5,6%, что обусловлено ростом автомобильного и производственного секторов, которые все чаще используют ИИ для автоматизации и контроля качества. Усилия правительства по продвижению Индустрии 4.0 и партнерские отношения с базовыми технологическими фирмами поддерживают рост рынка в Великобритании.

Доля рынка нейронных сетей глубокого обучения (DNN)

  • Индустрия нейронных сетей глубокого обучения (DNN) в основном представлена ​​хорошо зарекомендовавшими себя компаниями, среди которых:
  • Корпорация NVIDIA (США)
  • Google LLC (США)
  • Корпорация Microsoft (США)
  • Amazon Web Services, Inc. (США)
  • Корпорация Intel (США)
  • Корпорация IBM (США)
  • Advanced Micro Devices, Inc. (AMD) (США)
  • Мета ИИ (США)
  • Qualcomm Incorporated (США)
  • Корпорация Oracle (США)
  • SAS Institute Inc. (США)
  • Palantir Technologies Inc. (США)
  • H2O.ai (США)
  • DataRobot, Inc. (США)
  • Cerebras Systems Inc. (США)
  • xAI (США)

Последние разработки на европейском рынке нейронных сетей глубокого обучения (DNN)

  • В октябре 2023 года NVIDIA представила графический процессор H200 Tensor Core — процессор следующего поколения, предназначенный для ускорения обучения и вывода глубоких нейронных сетей (DNN). H200 обеспечивает на 20% более высокую производительность для генеративных рабочих нагрузок ИИ по сравнению со своими предшественниками. Он оптимизирован для крупномасштабных моделей ИИ, таких как трансформаторы и диффузионные модели, которые имеют решающее значение для приложений в области обработки естественного языка и компьютерного зрения. Крупнейшие поставщики облачных услуг, включая AWS и Azure, уже внедрили H200 для своих платформ ИИ, расширив возможности как в корпоративных, так и в исследовательских средах.
  • В январе 2024 года Google Cloud запустил Vertex AI Vision, новое дополнение к своей платформе Vertex AI, нацеленное на анализ изображений и видео в реальном времени с использованием глубокого обучения. Это облачное решение поддерживает варианты использования в розничной торговле (например, интеллектуальная касса, отслеживание запасов) и производстве (например, обнаружение дефектов). Оно обеспечивает 15%-ное улучшение скорости обработки за счет оптимизированного развертывания модели и производительности вывода. Vertex AI Vision легко интегрируется с существующими сервисами Google Cloud, помогая разработчикам масштабировать приложения компьютерного зрения быстрее и эффективнее.
  • В марте 2024 года Microsoft расширила свое сотрудничество с OpenAI, внедрив усовершенствованные модели на основе трансформатора в платформу Azure AI. Эта интеграция значительно расширяет возможности обработки естественного языка (NLP) для корпоративных пользователей. Приложения включают автоматизированное обслуживание клиентов, языковой перевод, генерацию контента и резюмирование документов. Более 100 компаний в ГЕРМАНИИ уже внедрили эти возможности, используя инфраструктуру Azure для внедрения интеллектуальной автоматизации в масштабе.
  • В апреле 2024 года xAI Илона Маска представила улучшенную версию своей платформы Grok, интегрировав более продвинутые DNN для предоставления улучшенных аналитических рассуждений и интерпретации данных. Обновленная система Grok предназначена для корпоративных приложений в таких областях, как предиктивное моделирование, бизнес-аналитика и стратегическое прогнозирование. Благодаря фокусировке на инсайтах в реальном времени и лучшей производительности Grok теперь служит мощным инструментом для принятия решений на основе данных и развертывания ИИ на уровне предприятия.
  • В июне 2024 года Intel выпустила ускоритель искусственного интеллекта Gaudi 3, разработанный для энергоэффективного высокопроизводительного обучения DNN. По сравнению со своим предшественником Gaudi 3 снижает энергопотребление на 25%, одновременно повышая пропускную способность памяти и производительность вычислений. Чип позиционируется как экономически эффективное решение для обучения и вывода искусственного интеллекта в крупномасштабных средах центров обработки данных. Внедрение уже началось среди основных поставщиков инфраструктуры данных по всей Европе.

SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация рынка нейронных сетей глубокого обучения (DNN) в Европе по типу продукта (программные платформы, аппаратные ускорители, услуги), технологии (CNN, RNN, GAN, Transformers и другие), применению (диагностика в здравоохранении, автономные транспортные средства, финансовые услуги, розничная торговля, производство и другие), развертыванию (облачное, локальное), конечному пользователю (предприятия, поставщики медицинских услуг, производители автомобилей, финансовые учреждения, государственные учреждения и другие) — отраслевые тенденции и прогноз до 2032 г. .
Размер Отчет об анализе размера, доли и тенденций рынка нейронных сетей глубокого обучения в Европе — обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 11.50 USD Billion долларов США.
Ожидается, что Отчет об анализе размера, доли и тенденций рынка нейронных сетей глубокого обучения в Европе — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 16.1% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают ALYUDA analysisLLC, ALPHABET INC., IBM, Neural Technologies restricted, NEURODIMENSIONInc., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm TechnologiesInc., Intel Corporation, Amazon internet ServicesInc., Microsoft, GMDH LLC., Sensory INC., Ward Systems clusterInc., Xilinx Inc., Starmind .
Testimonial