Europe Deep Learning Neural Networks Dnns Market
Размер рынка в млрд долларов США
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 11.50 Billion |
![]() |
USD 37.96 Billion |
![]() |
|
![]() |
|
Сегментация рынка нейронных сетей глубокого обучения (DNN) в Европе по типу продукта (программные платформы, аппаратные ускорители, услуги), технологии (CNN, RNN, GAN, Transformers и другие), применению (диагностика в здравоохранении, автономные транспортные средства, финансовые услуги, розничная торговля, производство и другие), развертыванию (облачное, локальное), конечному пользователю (предприятия, поставщики медицинских услуг, производители автомобилей, финансовые учреждения, государственные учреждения и другие) — отраслевые тенденции и прогноз до 2032 г.
Размер рынка нейронных сетей глубокого обучения (DNN)
- Объем европейского рынка нейронных сетей глубокого обучения (DNN) оценивался в 11,50 млрд долларов США в 2024 году и, как ожидается , достигнет 37,96 млрд долларов США к 2032 году при среднегодовом темпе роста 16,1% в течение прогнозируемого периода.
- Этот существенный рост обусловлен в первую очередь широким внедрением технологий искусственного интеллекта (ИИ), увеличением инвестиций в инфраструктуру машинного обучения и растущим спросом на расширенную аналитику данных в таких отраслях, как здравоохранение, автомобилестроение, финансы и розничная торговля. Распространение больших данных в сочетании с достижениями в области вычислительной мощности еще больше ускоряет расширение рынка.
- Лидерство региона в области технологических инноваций, подкрепленное значительными инвестициями в исследования и разработки (НИОКР), правительственными инициативами, способствующими внедрению ИИ, и сильным присутствием ведущих технологических компаний, является ключевым фактором восходящей траектории рынка. Кроме того, растущая интеграция DNN в автономные системы, интеллектуальное производство и персонализированные потребительские услуги обуславливает значительный спрос на решения глубокого обучения по всей Европе.
Анализ рынка нейронных сетей глубокого обучения (DNN)
- Глубокие нейронные сети (DNN) — это передовые алгоритмы искусственного интеллекта, разработанные для имитации процессов человеческого мозга, позволяющие машинам обрабатывать огромные наборы данных, распознавать закономерности и принимать решения на основе данных. Эти системы, включая программные платформы, аппаратные ускорители, такие как GPU и TPU, а также профессиональные услуги, имеют решающее значение для приложений в области диагностики в здравоохранении, автономных транспортных средств, финансового моделирования, персонализации розничной торговли и автоматизации производства.
- Рынок в значительной степени подпитывается доминированием Европы в области инноваций в области ИИ, при этом на регион придется более 40% мировых расходов на НИОКР в области ИИ в 2023 году, во главе с США. Быстрое внедрение автономных транспортных средств, а к 2027 году на дорогах Германии, по прогнозам, будет более 1,2 млн беспилотных автомобилей, стимулирует спрос на DNN в обработке изображений и данных датчиков в реальном времени.
- Технологические достижения, такие как модели на основе трансформаторов и генеративный ИИ, расширяют возможности DNN, позволяя применять их в обработке естественного языка (NLP), компьютерном зрении и предиктивной аналитике. Инициативы правительства Германии в области ИИ, такие как Национальный ресурс исследований ИИ (NAIRR), способствуют инновациям и поддерживают рост рынка.
- Германия доминирует на рынке с убедительной долей выручки в 42,1% в 2024 году, оцениваемой в 10,29 млрд долларов США, что обусловлено ее надежной технологической экосистемой, присутствием таких ключевых игроков, как NVIDIA и Google, а также значительными инвестициями в инфраструктуру ИИ.
- Ожидается, что самые быстрые темпы роста будут наблюдаться во Франции: прогнозируемый среднегодовой темп роста составит 16,8% в период с 2025 по 2032 год, что обусловлено государственной поддержкой исследований в области ИИ и растущим внедрением технологий в секторах здравоохранения и автомобилестроения.
- Среди типов продуктов сегмент программных платформ занимал наибольшую долю рынка — 48,7% в 2024 году, что объясняется широким использованием фреймворков глубокого обучения, таких как TensorFlow и PyTorch, в корпоративных и исследовательских приложениях.
Область применения отчета и сегментация европейского рынка нейронных сетей глубокого обучения (DNN)
Атрибуты |
Ключевые данные о рынке нейронных сетей глубокого обучения (DNN) в Европе |
Охваченные сегменты |
|
Страны, охваченные |
Европа
|
Ключевые игроки рынка |
|
Возможности рынка |
|
Информационные наборы данных с добавленной стоимостью |
Помимо аналитических данных о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, анализ цен, анализ доли бренда, опрос потребителей, демографический анализ, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу. |
Тенденции рынка нейронных сетей глубокого обучения (DNN)
« Генеративный ИИ, модели-трансформеры, периферийные вычисления и устойчивые решения ИИ »
- Внедрение генеративного ИИ и моделей на основе трансформаторов является заметной тенденцией: более 30% новых развертываний DNN в 2024 году будут использовать эти технологии для приложений в области обработки естественного языка, генерации изображений и производства креативного контента, улучшая пользовательский опыт в розничной торговле и СМИ.
- Развитие периферийных вычислений (25% новых решений DNN в 2024 году будут разработаны для обработки на устройствах) набирает популярность в автономных транспортных средствах и приложениях Интернета вещей, сокращая задержки и улучшая процесс принятия решений в режиме реального времени.
- Растет внимание к устойчивым решениям на основе ИИ: в 2024 году 15% новых аппаратных ускорителей будут сертифицированы на предмет энергоэффективности, что соответствует европейским инициативам в области экологически чистых технологий и снижает воздействие вычислений на основе ИИ на окружающую среду.
- Внедрение облачных платформ DNN стремительно растет: в 2024 году темпы внедрения вырастут на 20 %, чему способствуют масштабируемые и гибкие решения, предлагаемые такими поставщиками, как AWS, Microsoft Azure и Google Cloud.
- Интеграция глубоких нейронных сетей с экосистемами Интернета вещей, особенно в интеллектуальном производстве и здравоохранении, расширяется: 18% новых решений в 2024 году будут предназначены для аналитики данных в реальном времени и автоматизации в этих секторах.
- Растущий потребительский спрос на персонализированные услуги на базе искусственного интеллекта, такие как рекомендательные системы в розничной торговле и предиктивная диагностика в здравоохранении, стимулирует инновации в приложениях DNN по всей Европе.
Динамика рынка нейронных сетей глубокого обучения (DNN)
Водитель
«Внедрение ИИ, распространение больших данных, автономные системы, государственная поддержка и технологические достижения»
- Широкое внедрение технологий искусственного интеллекта в различных отраслях промышленности (по прогнозам, к 2027 году объем европейского рынка искусственного интеллекта достигнет 200 млрд долларов США) обуславливает значительный спрос на глубокие нейронные сети в таких приложениях, как диагностика в здравоохранении, автономное вождение и финансовое моделирование.
- Распространение больших данных (в 2023 году европейские предприятия ежедневно генерировали более 2,5 эксабайт данных) обусловливает необходимость использования современных глубоких нейронных сетей для обработки и анализа сложных наборов данных с целью получения практических сведений.
- Стремительное развитие автономных транспортных средств (по прогнозам, к 2027 году на дорогах Германии будет более 1,2 млн беспилотных автомобилей) увеличивает спрос на глубокие нейронные сети в области обработки изображений в реальном времени, объединения данных датчиков и алгоритмов принятия решений.
- Правительственные инициативы, такие как Французская национальная инициатива в области ИИ и Панканадская стратегия в области ИИ, обеспечивают существенное финансирование и нормативную поддержку исследований в области ИИ, способствуя инновациям и внедрению глубоких нейронных сетей в различных отраслях.
- Достижения в области аппаратных ускорителей, такие как графические процессоры NVIDIA A100 и TPU Google, повышают производительность DNN, обеспечивая более быстрое обучение и вывод сложных моделей в центрах обработки данных и на периферийных устройствах.
- Растущий спрос на персонализированный потребительский опыт (65% розничных торговцев Германии в 2023 году внедрят системы рекомендаций на основе искусственного интеллекта) стимулирует интеграцию глубоких нейронных сетей в приложения для розничной торговли, электронной коммерции и обслуживания клиентов.
Сдержанность/Вызов
« Высокие затраты на разработку, проблемы конфиденциальности данных, нехватка квалифицированных кадров, потребление энергии и сложности нормативного регулирования »
- Высокая стоимость разработки и развертывания глубоких нейронных сетей, особенно для специализированных аппаратных ускорителей и крупномасштабных моделей ИИ, создает проблему для их внедрения среди малых и средних предприятий, ограничивая масштабируемость рынка в сегментах, чувствительных к затратам.
- Проблемы конфиденциальности данных, обусловленные такими нормативными актами, как Закон Калифорнии о защите прав потребителей (CCPA) и Закон Франции о защите личной информации и электронных документов (PIPEDA), увеличивают расходы на соблюдение требований и усложняют работу поставщиков DNN с конфиденциальными данными.
- Нехватка квалифицированных специалистов в области искусственного интеллекта и глубокого обучения (по прогнозам, к 2026 году в Европе будет не хватать 250 000 специалистов в области искусственного интеллекта) создает проблемы для внедрения, обслуживания и инноваций в области технологий глубокой нейронной сети.
- Высокое энергопотребление процессов обучения и вывода DNN, при этом крупномасштабные модели потребляют до 500 МВт·ч в год, вызывает опасения относительно устойчивости и эксплуатационных расходов, особенно в центрах обработки данных.
- Быстрое устаревание технологий, обусловленное постоянным совершенствованием алгоритмов и оборудования ИИ, заставляет компании вкладывать значительные средства в НИОКР, что снижает прибыльность мелких игроков и ограничивает долгосрочные инновации.
- Сложности нормативного регулирования, такие как различия в структурах управления ИИ в Германии и Франции, создают проблемы для стандартизированного развертывания DNN и соответствия требованиям, увеличивая эксплуатационные расходы для поставщиков.
Европейский рынок нейронных сетей глубокого обучения (DNN)
Европейский рынок нейронных сетей глубокого обучения (DNN) сегментирован по типу продукта, технологии, применению, развертыванию и конечному пользователю, что обеспечивает комплексное понимание динамики рынка и возможностей роста.
- По типу продукта
На основе типа продукта рынок сегментируется на программные платформы, аппаратные ускорители и услуги. Сегмент программных платформ доминировал с долей выручки 48,7% в 2024 году, оцененной в 6,09 млрд долларов США, что обусловлено широким использованием таких фреймворков, как TensorFlow, PyTorch и Keras в корпоративных и исследовательских приложениях. Ожидается, что сегмент услуг будет расти с самым быстрым среднегодовым темпом роста в 16,5% с 2025 по 2032 год, подпитываемым спросом на услуги по консультированию и внедрению ИИ.
По технологии
На основе технологий рынок сегментирован на сверточные нейронные сети (CNN), рекуррентные нейронные сети (RNN), генеративно-состязательные сети (GAN), трансформеры и другие. Сегмент CNN занимал наибольшую долю в 40,2% в 2024 году, что обусловлено его использованием в распознавании изображений и автономных транспортных средствах. Ожидается, что сегмент трансформеров будет расти с самым быстрым среднегодовым темпом роста в 17,1% с 2025 по 2032 год, подпитываемым достижениями в области обработки естественного языка и генеративного ИИ.
По применению
На основе сферы применения рынок сегментирован на диагностику в здравоохранении, автономные транспортные средства, финансовые услуги, розничную и электронную коммерцию, автоматизацию производства и другие. Сегмент диагностики в здравоохранении принес наибольшую долю выручки в 35,6% в 2024 году, что обусловлено медицинской визуализацией на базе ИИ и предиктивной диагностикой. Ожидается, что сегмент автономных транспортных средств будет расти с самым быстрым среднегодовым темпом роста в 18,3% в период с 2025 по 2032 год, подпитываемым разработкой беспилотных автомобилей.
По развертыванию
На основе развертывания рынок сегментируется на облачный и локальный. Облачный сегмент занимал значительную долю в 60,8% в 2024 году, что обусловлено масштабируемыми решениями, предлагаемыми AWS, Azure и Google Cloud. Ожидается, что облачный сегмент будет расти с самым быстрым среднегодовым темпом роста в 16,9% с 2025 по 2032 год, подпитываемым спросом на гибкое и экономически эффективное развертывание ИИ.
Конечным пользователем
На основе конечного пользователя рынок сегментирован на предприятия, поставщиков медицинских услуг, производителей автомобилей, финансовые учреждения, государственные учреждения и другие. Сегмент предприятий доминировал с долей выручки 42,1% в 2024 году, что обусловлено внедрением ИИ в бизнес-аналитику. Ожидается, что сегмент поставщиков медицинских услуг будет расти с самым быстрым среднегодовым темпом роста в 17,4% с 2025 по 2032 год, подпитываемым диагностикой на основе ИИ и персонализированной медициной.
Региональный анализ рынка нейронных сетей глубокого обучения (DNN)
Обзор рынка нейронных сетей глубокого обучения (DNN) в Германии
Германия лидировала на рынке с внушительной долей выручки в 42,1% в 2024 году, оцененной в 10,29 млрд долларов США, что обусловлено ее надежной технологической экосистемой, присутствием таких ключевых игроков, как NVIDIA, Google и Microsoft, а также значительными инвестициями в инфраструктуру ИИ. Лидерство страны в области автономных транспортных средств, ИИ в здравоохранении и финансовых услуг в сочетании с государственной поддержкой через Национальную инициативу ИИ укрепляет ее доминирование.
Обзор рынка нейронных сетей глубокого обучения (DNN) во Франции
Франция готова расти с самым быстрым среднегодовым темпом роста в 16,8% с 2025 по 2032 год, благодаря правительственным инициативам, таким как Панканадская стратегия ИИ, которая поддерживает исследования и внедрение ИИ в здравоохранении, автомобилестроении и производстве. Франция занимала 12,1% рынка в 2024 году, с растущим внедрением DNN в умных городах и медицинской диагностике.
Обзор рынка нейронных сетей глубокого обучения (DNN) в Великобритании
Доля рынка Великобритании в 2024 году составила 5,6%, что обусловлено ростом автомобильного и производственного секторов, которые все чаще используют ИИ для автоматизации и контроля качества. Усилия правительства по продвижению Индустрии 4.0 и партнерские отношения с базовыми технологическими фирмами поддерживают рост рынка в Великобритании.
Доля рынка нейронных сетей глубокого обучения (DNN)
- Индустрия нейронных сетей глубокого обучения (DNN) в основном представлена хорошо зарекомендовавшими себя компаниями, среди которых:
- Корпорация NVIDIA (США)
- Google LLC (США)
- Корпорация Microsoft (США)
- Amazon Web Services, Inc. (США)
- Корпорация Intel (США)
- Корпорация IBM (США)
- Advanced Micro Devices, Inc. (AMD) (США)
- Мета ИИ (США)
- Qualcomm Incorporated (США)
- Корпорация Oracle (США)
- SAS Institute Inc. (США)
- Palantir Technologies Inc. (США)
- H2O.ai (США)
- DataRobot, Inc. (США)
- Cerebras Systems Inc. (США)
- xAI (США)
Последние разработки на европейском рынке нейронных сетей глубокого обучения (DNN)
- В октябре 2023 года NVIDIA представила графический процессор H200 Tensor Core — процессор следующего поколения, предназначенный для ускорения обучения и вывода глубоких нейронных сетей (DNN). H200 обеспечивает на 20% более высокую производительность для генеративных рабочих нагрузок ИИ по сравнению со своими предшественниками. Он оптимизирован для крупномасштабных моделей ИИ, таких как трансформаторы и диффузионные модели, которые имеют решающее значение для приложений в области обработки естественного языка и компьютерного зрения. Крупнейшие поставщики облачных услуг, включая AWS и Azure, уже внедрили H200 для своих платформ ИИ, расширив возможности как в корпоративных, так и в исследовательских средах.
- В январе 2024 года Google Cloud запустил Vertex AI Vision, новое дополнение к своей платформе Vertex AI, нацеленное на анализ изображений и видео в реальном времени с использованием глубокого обучения. Это облачное решение поддерживает варианты использования в розничной торговле (например, интеллектуальная касса, отслеживание запасов) и производстве (например, обнаружение дефектов). Оно обеспечивает 15%-ное улучшение скорости обработки за счет оптимизированного развертывания модели и производительности вывода. Vertex AI Vision легко интегрируется с существующими сервисами Google Cloud, помогая разработчикам масштабировать приложения компьютерного зрения быстрее и эффективнее.
- В марте 2024 года Microsoft расширила свое сотрудничество с OpenAI, внедрив усовершенствованные модели на основе трансформатора в платформу Azure AI. Эта интеграция значительно расширяет возможности обработки естественного языка (NLP) для корпоративных пользователей. Приложения включают автоматизированное обслуживание клиентов, языковой перевод, генерацию контента и резюмирование документов. Более 100 компаний в ГЕРМАНИИ уже внедрили эти возможности, используя инфраструктуру Azure для внедрения интеллектуальной автоматизации в масштабе.
- В апреле 2024 года xAI Илона Маска представила улучшенную версию своей платформы Grok, интегрировав более продвинутые DNN для предоставления улучшенных аналитических рассуждений и интерпретации данных. Обновленная система Grok предназначена для корпоративных приложений в таких областях, как предиктивное моделирование, бизнес-аналитика и стратегическое прогнозирование. Благодаря фокусировке на инсайтах в реальном времени и лучшей производительности Grok теперь служит мощным инструментом для принятия решений на основе данных и развертывания ИИ на уровне предприятия.
- В июне 2024 года Intel выпустила ускоритель искусственного интеллекта Gaudi 3, разработанный для энергоэффективного высокопроизводительного обучения DNN. По сравнению со своим предшественником Gaudi 3 снижает энергопотребление на 25%, одновременно повышая пропускную способность памяти и производительность вычислений. Чип позиционируется как экономически эффективное решение для обучения и вывода искусственного интеллекта в крупномасштабных средах центров обработки данных. Внедрение уже началось среди основных поставщиков инфраструктуры данных по всей Европе.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.