Рынок чипов машинного обучения ожидается, что он будет расти на 40,60% в год и достигнет 72,45 млрд долларов США к 2027 году, при этом такие факторы, как нехватка квалифицированной рабочей силы и фобия, связанная с искусственным интеллектом, будут выступать в качестве сдерживающих факторов и могут препятствовать росту рынка в прогнозный период с 2020 по 2027 год.
Чтобы преодолеть такие препятствия, такие факторы, как развитие умных городов и умных домов, распространение Интернета вещей по всему миру и технологическое развитие, создадут новые и широкие возможности для роста рынка в вышеупомянутый прогнозируемый период.
Сценарий рынка чипов машинного обучения
По данным Data Bridge Market Research, на рынке чипов машинного обучения наблюдается рост с точки зрения их внедрения из-за растущего применения машинное обучение во многих отраслях промышленности и внедрение квантовых вычислений. Внедрение искусственного интеллекта во всем мире также, вероятно, будет способствовать росту рынка в прогнозируемый период с 2020 по 2027 год.
Теперь вопрос в том, на какие еще регионы ориентирован рынок чипов машинного обучения? Data Bridge Market Research прогнозирует большой рост в Европе в прогнозируемый период 2020-2027 годов благодаря поддержке передовых технологий. Напротив, Северная Америка, как считается, доминирует на рынке чипов машинного обучения из-за присутствия большинства производителей.
Для более подробного анализа чип машинного обучения рынок запросить брифинг у наших аналитиков https://www.databridgemarketresearch.com/ru/speak-to-analyst/?dbmr=global-machine-learning-chip-market
Объем рынка чипов машинного обучения
Рынок чипов машинного обучения сегментирован по странам: США, Канада и Мексика в Северной Америке, Бразилия, Аргентина и остальная часть Южной Америки, включая Южную Америку, Германию, Италию, Великобританию, Францию, Испанию, Нидерланды, Бельгию, Швейцария, Турция, Россия, Остальные страны Европы в Европе, Япония, Китай, Индия, Южная Корея, Австралия, Сингапур, Малайзия, Таиланд, Индонезия, Филиппины, Остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, Остальная часть Ближнего Востока и Африки (MEA) в составе Ближнего Востока и Африки (MEA).
- Анализ рынка чипов машинного обучения по всей стране дополнительно анализируется на основе максимальной детализации для дальнейшей сегментации. Рынок чипов машинного обучения в зависимости от типа чипа разделен на графические процессоры, ASIC, FPGA, процессоры и другие. В зависимости от технологии рынок чипов машинного обучения разделен на системы «на кристалле», «системы в корпусе», многочиповые модули и другие. В зависимости от отраслевой вертикали рынок чипов машинного обучения был сегментирован на СМИ и реклама, BFSI, ИТ и телекоммуникации, розничная торговля, здравоохранение, автомобильный и транспорт и другие.
Чтобы узнать больше об исследовании, https://www.databridgemarketresearch.com/ru/reports/global-machine-learning-chip-market
Ключевые моменты, рассмотренные в разделе «Тенденции и прогнозы рынка чипов машинного обучения» до 2027 года.
- Размер рынка
- Новые объемы продаж рынка
- Объемы продаж замещения рынка
- Рыночная установленная база
- Рынок по брендам
- Объемы рыночных процедур
- Анализ рыночных цен на продукцию
- Анализ рыночной стоимости медицинского обслуживания
- Доли рынка в разных регионах
- Последние события для конкурентов на рынке
- Предстоящие приложения на рынке
- Исследование рыночных новаторов
Ключевые конкуренты рынка, представленные в отчете
- Google Инк.
- Amazon Веб-сервисы, Inc.
- Advanced Micro Devices, Inc.
- Холдинговая компания BitMain Technologies
- Корпорация Интел
- Ксилинкс
- SAMSUNG
- Qualcomm Technologies, Inc.
- Корпорация NVIDIA
- Волновые вычисления, Inc.
- Графкор
- Корпорация IBM
- Тайваньская компания по производству полупроводников с ограниченной ответственностью
- Микрон Технология, Инк.
Выше приведены ключевые игроки, охваченные в отчете, чтобы узнать больше и исчерпывающий список чип машинного обучения компании свяжитесь с нами https://www.databridgemarketresearch.com/ru/toc/?dbmr=global-machine-learning-chip-market
Методология исследования Рынок чипов машинного обучения
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Рыночные данные анализируются и прогнозируются с использованием рыночных статистических и последовательных моделей. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, запросите звонок аналитика или оставьте свой запрос.
Ключевой исследовательской методологией, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевыми экспертами) проверку. Помимо этого, модели данных включают сетку позиционирования поставщиков, анализ временной шкалы рынка, обзор и руководство рынка, сетку позиционирования компании, анализ доли компании на рынке, стандарты измерения, анализ сверху вниз и анализ доли поставщиков. Чтобы узнать больше о методологии исследования, оставьте запрос и поговорите с нашими отраслевыми экспертами.
Связанные отчеты
- Глобальный рынок машинного обучения как услуги (MLaaS) – тенденции отрасли и прогноз до 2026 года
- Глобальный рынок глубокого обучения на машинном зрении – тенденции отрасли и прогноз до 2025 года
- Глобальный рынок программного обеспечения для внедрения машинного обучения – отраслевые тенденции и прогноз до 2027 года
- Машинное обучение как рынок услуг Испании – тенденции отрасли и прогноз до 2027 года
Просмотрите категорию «Полупроводники и электроника» Связанные отчеты@ https://www.databridgemarketresearch.com/ru/report-category/semiconductors-and-electronics/