Global Data Science Platform Market Segmentation, By Component Type (Platform, Services, Support and Maintenance, Consulting, and Deployment and Integration), Function Division (Marketing, Sales, Logistics, Finance and Accounting, Customer Support, Business Operations, and Others), Deployment Model (On-Premises and Cloud based), Organization Size (Small and Medium-sized Enterprises (SMEs), Large Enterprises), End User Application (Banking, Financial Services, and Insurance (BFSI), Telecom and IT, Retail and E-commerce, Healthcare and Life sciences, Manufacturing, Energy and Utilities, Media and Entertainment, Transportation and Logistics, Government, and Others) – Industry Trends and Forecast to 2031
Data Science Platform Market Analysis
The data science platform market is experiencing rapid growth due to the integration of advanced technologies such as artificial intelligence (AI), machine learning (ML), and cloud computing. One of the latest methods driving the market is the use of AutoML (automated machine learning) tools, which simplify the process of model creation, enabling businesses with less expertise to harness AI effectively. These platforms allow data scientists to focus on innovation, while automation handles repetitive tasks.
Cloud-based data science platforms, such as Google Cloud AI and AWS SageMaker, further promote scalability and cost-efficiency. By utilizing the cloud, businesses can access immense computational power on-demand, ensuring the rapid processing of vast datasets.
Another advancement is the adoption of collaborative tools that allow teams to work simultaneously on projects, increasing efficiency and reducing the time-to-market for AI solutions. These platforms often integrate with existing data ecosystems, making them accessible to a wide range of industries such as healthcare, finance, and retail. As organizations realize the value of data-driven insights, the demand for comprehensive data science platforms is expected to rise significantly, driving market growth.
Data Science Platform Market Size
The global data science platform market size was valued at USD 158.59 billion in 2023 and is projected to reach USD 1,216.19 billion by 2031, with a CAGR of 29.00% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.
Data Science Platform Market Trends
“Rise of Automated Machine Learning (AutoML)”
One significant trend driving the growth of the data science platform market is the rise of Automated Machine Learning (AutoML). This technology simplifies and accelerates the model development process, allowing users with limited data science expertise to build predictive models. For instance, in January 2023, Science Applications International Corp. introduced the "Tenjin" data science platform, a versatile solution that supports low-code to full-code development for AI and machine learning applications. Powered by Dataiku, Tenjin facilitates the entire lifecycle of AI and ML model development, from deployment to training and automation, along with advanced data visualization tools. This platform aims to simplify complex processes, making AI accessible to a wider range of businesses.
Report Scope and Data Science Platform Market Segmentation
Attributes
|
Data Science Platform Key Market Insights
|
Segments Covered
|
|
Countries Covered
|
U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America
|
Key Market Players
|
IBM (U.S.), DataRobot Inc., (U.S.), apheris AI GmbH (Germany), The Digital Talent Ecosystem (U.S.), Databand (Israel), dotData (U.S.), Explorium Inc., (U.S.), Noogata (Israel), Tecton Inc., (U.S.), Spell Designs Pty Ltd (U.S.), Arrikto Inc., (U.S.), Iterative (U.S.), Google Inc (U.S.), Microsoft (U.S.), SAS Institute Inc., (U.S.), Amazon Web Services, Inc. (U.S.), The MathWorks, Inc. (U.S.), Cloudera Inc.,(U.S.), Teradata (U.S.), TIBCO Software Inc. (U.S.), ALTERYX, INC. (U.S.), RapidMiner (U.S.), Databricks (U.S.), Snowflake Inc., (U.S.), H2O.ai (U.S.), Altair Inc., (U.S.), Anaconda Inc., (U.S.), SAP SE (U.S.), Domino Data Lab Inc., (U.S.) and Dataiku (U.S.)
|
Market Opportunities
|
|
Value Added Data Infosets
|
In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.
|
Data Science Platform Market Definition
A data science platform is an integrated environment that provides tools, libraries, and infrastructure for data scientists to develop, manage, and execute data-driven projects. It enables users to collect, analyze, and visualize large datasets while facilitating collaboration between teams. These platforms often support various programming languages (such as Python, R, and SQL), machine learning algorithms, and data pipelines for efficient model building and deployment. Data science platforms also offer capabilities such as version control, automation, and scalability, making it easier for organizations to leverage insights from data in a structured and repeatable way for decision-making.
Data Science Platform Market Dynamics
Drivers
- Demand for Data-Driven Decision Making
The increasing reliance on data-driven decision-making is a major driver of the data science platform market. Organizations across industries are shifting towards using data insights to enhance strategy, improve customer engagement, and streamline operations. Data science platforms enable businesses to efficiently process and analyze vast datasets, leading to more accurate and informed decisions. For instance, in October 2023, GoodData Corporation unveiled its latest AI-driven data analytics platform, designed to enhance machine learning (ML), AI, and business intelligence (BI) workflows. This platform incorporates various generative AI capabilities, including a virtual assistant that provides summaries and insights. By streamlining data discovery and development processes, it enables users to make informed decisions faster, ultimately improving efficiency and effectiveness in data-driven environments.
- Growth of Big Data
The exponential rise in data generated from various sources such as IoT devices, social media platforms, and e-commerce activities is a key driver of the data science platform market. These vast volumes of unstructured and structured data require robust platforms for efficient storage, processing, and analysis. For instance, in January 2024, Databricks launched a new business intelligence platform specifically designed for telecom carriers and network service providers (NSPs). This innovative platform empowers these companies by providing a comprehensive view of their networks, operations, and customer interactions. Importantly, it ensures data privacy and protects confidential intellectual property, enabling telecom firms to make informed decisions while maintaining high standards of security in their operations.
Opportunities
- Open-Source Innovation
Open-source innovation significantly enhances the data science platform market by providing accessible tools that foster collaboration and rapid development. Platforms such as Apache Spark and TensorFlow exemplify this trend, allowing data scientists to leverage robust libraries without hefty licensing fees. As organizations seek cost-effective solutions for machine learning and big data processing, they increasingly adopt these open-source frameworks, leading to a surge in community contributions and enhancements. This collaborative environment not only accelerates the development of new features but also attracts a larger talent pool, creating opportunities for businesses to innovate and maintain competitive advantages in a data-driven landscape.
- Advances in Predictive Analytics
The surge in predictive analytics across healthcare, finance, and retail sectors presents significant opportunities in the data science platform market. In healthcare, predictive models are used to forecast patient outcomes and optimize treatment plans, as seen with tools such as IBM Watson Health. In finance, companies leverage predictive analytics for credit scoring and fraud detection, exemplified by FICO's advanced scoring algorithms. For instance, in October 2022, IBM Corporation launched the Diamondback tape library, an advanced storage solution utilizing LTO technology. This innovative product boasts an impressive capacity of up to 27 petabytes (PB) of data storage within a single server rack. The Diamondback is designed to meet the increasing demands for data storage, offering scalability and reliability for organizations needing to manage vast amounts of information securely and efficiently. As organizations recognize the value of predictive insights for decision-making, the demand for sophisticated data science platforms capable of handling complex modeling and forecasting continues to grow, creating lucrative market prospects.
Restraints/Challenges
- Data Privacy and Security Concerns
Data privacy and security concerns significantly hinder the data science platform market. As organizations rely more on data analytics, they face mounting pressure to comply with stringent regulations such as GDPR and CCPA. Non-compliance can result in hefty fines and reputational damage, leading organizations to be cautious in their data handling practices. This trepidation restricts the adoption of advanced data science solutions, as companies may prioritize security over innovation. In addition, the need for robust security measures can increase implementation costs and complexity, further deterring organizations from investing in new data science platforms and slowing overall market growth.
- Lack of Skilled Professionals
A lack of skilled professionals significantly hinders the data science platform market. The rapid evolution of data science technologies has resulted in a substantial talent gap, with many organizations struggling to find qualified data scientists and analysts. This shortage impedes the effective utilization of advanced data science platforms, leading to underperformance in analytics initiatives. Companies often invest in sophisticated tools but cannot maximize their potential due to insufficient expertise in interpreting data and deriving actionable insights. Consequently, this talent deficit stifles innovation, slows project timelines, and ultimately limits market growth as businesses fail to leverage data science capabilities to their fullest extent.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Data Science Platform Market Scope
The market is segmented on the basis of component type, function division, deployment model, organization size and end user application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Component Type
- Platform
- Services
Professional Services
- Support and Maintenance
- Consulting
- Deployment and Integration
Managed Services
Function Division
- Marketing
- Sales
- Logistics
- Finance and Accounting
- Customer Support
- Business Operations
- Others
Deployment Model
- On-Premises
- Cloud based
Organization Size
- Small and Medium-sized Enterprises (SMEs)
- Large Enterprises
End User Application
- Banking, Financial Services, and Insurance (BFSI)
- Telecom and IT
- Retail and E-commerce
- Healthcare and Life sciences
- Manufacturing
- Energy and Utilities
- Media and Entertainment
- Transportation and Logistics
- Government
- Others
Data Science Platform Market Regional Analysis
The market is analyzed and market size insights and trends are provided by component type, function division, deployment model, organization size and end user application as referenced above.
The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
North America is expected to dominate the data science platform market due to the presence of a well-established infrastructure and low labor costs in the advancing countries. Moreover, the effective after-sale services offered by manufacturers within the economies are further estimated to accelerate the expansion over the forecast period.
Asia-Pacific is expected to witness significant growth during the forecast period due to rapid growth in the oil and gas exploration operation in the area within the region. China's large base for producing electronics items makes it a significant contributor to the regional market expansion.
The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Data Science Platform Market Share
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Data Science Platform Market Leaders Operating in the Market Are:
- IBM (U.S.)
- DataRobot Inc., (U.S.)
- apheris AI GmbH (Germany)
- The Digital Talent Ecosystem (U.S.)
- Databand (Israel)
- dotData (U.S.)
- Explorium Inc., (U.S.)
- Noogata (Israel)
- Tecton Inc., (U.S.)
- Spell Designs Pty Ltd (U.S.)
- Arrikto Inc., (U.S.)
- Iterative (U.S.)
- Google Inc (U.S.)
- Microsoft (U.S.)
- SAS Institute Inc., (U.S.)
- Amazon Web Services, Inc. (U.S.)
- The MathWorks, Inc. (U.S.)
- Cloudera Inc., (U.S.)
- Teradata (U.S.)
- TIBCO Software Inc. (U.S.)
- ALTERYX, INC. (U.S.)
- RapidMiner (U.S.),
- Databricks (U.S.)
- Snowflake Inc., (U.S.)
- H2O.ai (U.S.)
- Altair Inc., (U.S.)
- Anaconda Inc., (U.S.)
- SAP SE (U.S.)
- Domino Data Lab Inc., (U.S.)
- Dataiku (U.S.)
Latest Developments in Data Science Platform Market
- In June 2024, IBM Corporation announced a strategic collaboration with Telefónica Tech aimed at driving the adoption of cutting-edge Artificial Intelligence (AI), analytics, and data governance solutions. This partnership seeks to address the evolving needs of enterprises, enabling them to leverage advanced technologies for improved decision-making, operational efficiency, and enhanced customer experiences in an increasingly complex business environment
- In March 2024, Microsoft revealed a collaboration with NVIDIA focused on enhancing healthcare and life sciences innovation through cloud AI and accelerated computing technologies. This partnership aims to revolutionize patient care by expediting access to precision medicine and AI-driven diagnostics. The initiative is expected to significantly advance the healthcare industry by providing faster, more accurate solutions for diagnosing and treating patients, ultimately improving health outcomes
- In January 2023, Science Applications International Corp. introduced the "Tenjin" data science platform, a versatile solution that supports low-code to full-code development for AI and machine learning applications. Powered by Dataiku, Tenjin facilitates the entire lifecycle of AI and ML model development, from deployment to training and automation, along with advanced data visualization tools. This platform aims to simplify complex processes, making AI accessible to a wider range of businesses
- In October 2022, IBM Corporation launched the Diamondback tape library, an advanced storage solution utilizing LTO technology. This innovative product boasts an impressive capacity of up to 27 petabytes (PB) of data storage within a single server rack. The Diamondback is designed to meet the increasing demands for data storage, offering scalability and reliability for organizations needing to manage vast amounts of information securely and efficiently
- In June 2022, SAS Institute expanded its capabilities by acquiring Kamakura Corporation, enhancing its portfolio with integrated risk solutions. This acquisition focuses on delivering specialized professional services in Asset Liability Management (ALM) and other financial sectors, including banking. By combining resources and expertise, SAS aims to offer comprehensive solutions that address complex risk management challenges, helping organizations make informed financial decisions and navigate market uncertainties effectively
SKU-