Global Artificial Intelligence In Marketing Market
Market Size in USD Billion
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 31.28 Billion |
![]() |
USD 227.49 Billion |
![]() |
|
![]() |
Global Artificial intelligence in Marketing Market Segmentation, By Offering (Software, Hardware, and Services), Deployment Mode (Cloud-Based and On-Premises), Technology (Machine Learning, Natural Language Processing (NLP), Context-Aware Computing, and Computer Vision), Application (Social Media Advertising, Search Advertising, Dynamic Pricing, Virtual Assistant, Content Curation, Sales and Marketing Automation, Analytics Platform, and Others), End User (Banking, Financial Services, and Insurance, Retail, Consumer Goods, Media and Entertainment, Enterprise, and Others) – Industry Trends and Forecast to 2032
Artificial intelligence in Marketing Market Analysis
The artificial intelligence (AI) in marketing market is experiencing rapid growth, driven by advancements in AI technologies such as machine learning, natural language processing (NLP), computer vision, and predictive analytics. Businesses are increasingly leveraging AI to enhance customer engagement, optimize marketing strategies, and improve overall efficiency. AI-powered tools enable personalized content creation, automated customer interactions, and data-driven decision-making, helping companies gain a competitive edge.
Recent advancements in AI have significantly transformed the marketing landscape. Generative AI, chatbots, and AI-driven analytics platforms are revolutionizing customer engagement by providing real-time insights and hyper-personalized recommendations. AI is also enhancing search advertising, social media marketing, and dynamic pricing strategies, allowing businesses to tailor their approaches based on consumer behavior and preferences.
The market is witnessing strong adoption across various industries, including retail, banking, media, and consumer goods. North America leads in AI marketing adoption due to the presence of major technology players, while Asia-Pacific is emerging as a high-growth region due to increasing digital transformation. As AI continues to evolve, it will drive innovation, efficiency, and effectiveness in marketing strategies worldwide
Artificial intelligence in Marketing Market Size
The global artificial intelligence in marketing market size was valued at USD 31.28 billion in 2024 and is projected to reach USD 227.49 billion by 2032, with a CAGR of 28.13% during the forecast period of 2025 to 2032. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.
Artificial intelligence in Marketing Market Trends
“Increasing Integration of Predictive Analytics”
The artificial intelligence (AI) in marketing market is evolving rapidly, with predictive analytics emerging as a key trend driving innovation. Businesses are increasingly leveraging AI-powered predictive analytics to analyze vast amounts of consumer data, forecast trends, and optimize marketing strategies. This technology enables brands to anticipate customer behavior, personalize content, and improve customer engagement in real time. For Instance, Amazon uses AI-driven recommendation engines to predict what customers are likely to purchase based on browsing history and previous interactions, significantly enhancing conversion rates. In addition, AI-powered dynamic pricing strategies help e-commerce businesses adjust prices based on demand fluctuations, competitor pricing, and consumer sentiment. With the rise of machine learning and natural language processing (NLP), companies can refine audience segmentation, automate social media advertising, and enhance customer relationship management (CRM). As AI adoption accelerates, predictive analytics will continue to shape the future of marketing automation, targeted advertising, and data-driven decision-making.
Report Scope and Artificial intelligence in Marketing Market Segmentation
Attributes |
Artificial intelligence in Marketing Key Market Insights |
Segments Covered |
|
Countries Covered |
U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America |
Key Market Players |
IBM (U.S.), Google (U.S.), Microsoft (U.S.), Salesforce, Inc. (U.S.), Qualcomm Technologies, Inc. (U.S.), NVIDIA Corporation (U.S.), Intel Corporation (U.S.), SAMSUNG (South Korea), Micron Technology, Inc. (U.S.), Amazon Web Services, Inc. (U.S.), Apple Inc. (U.S.), Verint Systems Inc. (U.S.), Meta (U.S.), Siemens (Germany), General Electric Company (U.S.), Oracle (U.S.), Enlitic, Inc. (U.S.), Iteris, Inc. (U.S.), iCarbonX (China), and Advanced Micro Devices, Inc. (U.S.) |
Market Opportunities |
|
Value Added Data Infosets |
In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis. |
Artificial intelligence in Marketing Market Definition
Artificial Intelligence (AI) in Marketing refers to the use of AI technologies, such as machine learning, natural language processing (NLP), computer vision, and predictive analytics, to enhance and automate marketing processes. AI enables businesses to analyze vast amounts of consumer data, personalize customer interactions, optimize advertising strategies, and improve decision-making in real time.
Artificial intelligence in Marketing Market Dynamics
Drivers
- Growing Demand for Personalization
Personalization has become a critical driver in the AI in marketing market, as businesses increasingly rely on AI-driven analytics to deliver customized experiences. AI enables brands to analyze customer data, segment audiences, and create tailored marketing campaigns that resonate with individual preferences. By leveraging machine learning (ML) and natural language processing (NLP), businesses can recommend products, curate personalized content, and optimize email marketing strategies. For Instance, Netflix uses AI-powered recommendation engines to analyze viewing patterns and suggest content based on user behavior, significantly boosting engagement and retention. Similarly, Amazon personalizes shopping experiences by recommending products based on past purchases and browsing history. This ability to provide hyper-personalized marketing enhances customer satisfaction, improves conversion rates, and strengthens brand loyalty, making AI-driven personalization a crucial factor in the market's expansion.
- Rising Adoption of AI-Powered Chatbots & Virtual Assistants
The increasing use of AI-powered chatbots and virtual assistants is another key market driver, as businesses seek to enhance customer engagement while improving operational efficiency. AI chatbots, integrated with machine learning and NLP, can simulate human-like conversations, provide instant support, and handle multiple customer queries simultaneously. Companies in e-commerce, banking, and customer service sectors are increasingly adopting AI chatbots to automate responses, resolve common issues, and drive sales. For instance, Sephora utilizes AI-powered chatbots on platforms such as Facebook Messenger to offer personalized beauty recommendations and product suggestions based on customer inquiries. Likewise, Bank of America's virtual assistant, Erica, helps users manage accounts, track transactions, and receive financial insights through AI-driven interactions. By improving response times, reducing operational costs, and enhancing customer satisfaction, AI-powered chatbots and virtual assistants are driving the adoption of AI in marketing and reshaping customer service strategies across industries.
Opportunities
- Increasing Advancements in Machine Learning and Natural Language Processing (NLP)
The continuous advancements in machine learning (ML) and natural language processing (NLP) are transforming the AI in marketing market, creating new opportunities for businesses to enhance data analysis and customer engagement. ML algorithms can process vast amounts of unstructured data, recognize patterns, and deliver actionable insights with unmatched accuracy. Similarly, NLP enables AI-powered tools to understand, interpret, and generate human-like text, making chatbots, voice assistants, and content automation more efficient. For Instance, Google’s BERT (Bidirectional Encoder Representations from Transformers) has significantly improved search engine accuracy by understanding user intent rather than relying solely on keyword matching. This has enabled marketers to refine SEO strategies and enhance content relevance. In addition, OpenAI’s ChatGPT allows businesses to automate customer support, generate marketing copy, and personalize interactions at scale. These AI-driven capabilities present a significant market opportunity, enabling businesses to optimize marketing strategies, improve audience targeting, and create more engaging customer experiences.
- Increasing Use of Predictive Analytics
The rising adoption of AI-powered predictive analytics presents a major opportunity in the AI in marketing market, as businesses seek data-driven decision-making to stay ahead of consumer trends. Predictive analytics leverages AI, machine learning, and big data to anticipate customer behavior, optimize marketing campaigns, and boost conversion rates. By analyzing historical data, businesses can forecast purchasing trends, segment audiences, and personalize outreach efforts with greater precision.
For instance, Spotify uses predictive analytics to recommend songs and curate personalized playlists based on users' listening habits, enhancing engagement and user retention. Similarly, retail giants such as Walmart utilize predictive analytics to optimize inventory management, pricing strategies, and targeted promotions based on demand forecasting. As businesses continue to invest in AI-driven analytics, predictive modeling is emerging as a powerful tool to drive higher ROI, improved customer experiences, and competitive advantage in digital marketing.
Restraints/Challenges
- High Implementation Costs
Implementing AI-driven marketing solutions requires significant investment in technology, infrastructure, and expertise. Businesses must allocate funds for advanced AI tools, cloud computing, and data processing to enhance marketing strategies. SMBs struggle with high costs, limiting their ability to compete with enterprises that have dedicated AI teams. For Instance, Amazon’s AI recommendation system requires massive financial resources, whereas smaller retailers may rely on basic analytics tools. In addition, maintenance, updates, and model training add to long-term expenses. AI models need continuous refinement to stay effective, and failure to do so can result in poor performance and decreased marketing efficiency.
- Lack of Skilled Workforce
AI-powered marketing requires expertise in machine learning, data science, and analytics, yet many companies struggle to find skilled professionals. The shortage of AI specialists slows down AI adoption and innovation, making it difficult for businesses to fully leverage AI’s potential. Companies must train employees or hire experts, increasing operational costs. For instance, adopting AI-driven ad targeting requires specialized data scientists, which many businesses cannot afford. Moreover, as AI evolves, employees must continuously update their skills, requiring ongoing education. Without skilled talent, companies risk ineffective AI implementation, reducing competitiveness in data-driven marketing strategies.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Artificial intelligence in Marketing Market Scope
The market is segmented on the basis of offering, deployment mode, technology, application, and end user. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Offering
- Software
- Hardware
- Services
Deployment Mode
- Cloud-Based
- On-Premises
Technology
- Machine Learning
- Natural Language Processing (NLP)
- Context-Aware Computing
- Computer Vision
Application
- Social Media Advertising
- Search Advertising
- Dynamic Pricing
- Virtual Assistant
- Content Curation
- Sales and Marketing Automation
- Analytics Platform
- Others
End User
- Banking, Financial Services, and Insurance (BFSI)
- Retail
- Consumer Goods
- Media and Entertainment
- Enterprise
- Others
Artificial intelligence in Marketing Market Regional Analysis
The market is analyzed and market size insights and trends are provided by country, offering, deployment mode, technology, application, and end user. The growth amongst these segments will help you analyse meagre growth segments in the industries, and provide the users as referenced above.
The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
North America dominates the artificial intelligence (AI) in marketing market due to the widespread adoption of AI by both small and large enterprises. The region benefits from a strong technological infrastructure and a high level of investment in AI-driven marketing solutions. In addition, the presence of major technology companies fosters innovation and accelerates AI implementation. These factors collectively drive market growth, making North America a leader in AI-powered marketing.
Asia-Pacific is projected to experience fastest growth in the artificial intelligence (AI) in marketing market. This expansion is driven by increasing demand for AI-powered solutions in rapidly developing economies such as China, Japan, and India. Growing digital transformation, rising internet penetration, and government initiatives supporting AI adoption further contribute to market growth. As businesses in these countries continue to invest in AI technologies, the region is expected to witness significant advancements in AI-driven marketing strategies.
The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Artificial intelligence in Marketing Market Share
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Artificial intelligence in Marketing Market Leaders Operating in the Market Are:
- IBM (U.S.)
- Google (U.S.)
- Microsoft (U.S.)
- Salesforce, Inc. (U.S.)
- Qualcomm Technologies, Inc. (U.S.)
- NVIDIA Corporation (U.S.)
- Intel Corporation (U.S.)
- SAMSUNG (South Korea)
- Micron Technology, Inc. (U.S.)
- Amazon Web Services, Inc. (U.S.)
- Apple Inc. (U.S.)
- Verint Systems Inc. (U.S.)
- Meta (U.S.)
- Siemens (Germany)
- General Electric Company (U.S.)
- Oracle (U.S.)
- Enlitic, Inc. (U.S.)
- Iteris, Inc. (U.S.)
- iCarbonX (China)
- Advanced Micro Devices, Inc. (U.S.)
- Iteris Inc. (U.S.)
Latest Developments in Artificial intelligence in Marketing Market
- In January 2025, LS Digital, an Indian digital marketing transformation company, introduced its AI-powered marketing stack. This initiative highlights the increasing role of AI in marketing, allowing brands to utilize data-driven insights, personalize campaigns, and predict market trends with exceptional precision
- In September 2024, Mondelēz International (Nasdaq: MDLZ) launched an advanced platform aimed at enhancing its global marketing capabilities. By expanding the use of artificial intelligence (AI) and generative AI, the company seeks to optimize consumer experiences and drive marketing efficiency
- In June 2023, Salesforce, a global leader in customer relationship management (CRM), introduced its latest generative AI solutions, Marketing GPT and Commerce GPT. In Marketing GPT, marketers can create personalized emails, refine audience segmentation, and automate marketing campaigns. In Commerce GPT, businesses can deliver AI-driven shopping experiences with customized recommendations and tailored deals
- In February 2023, Bain & Company formed a strategic global services alliance with OpenAI to help enterprises maximize the benefits of artificial intelligence. This collaboration integrates OpenAI’s cutting-edge AI tools, including ChatGPT and DALL·E, into Bain’s consulting services, enhancing efficiency and client outcomes. The Coca-Cola Company became the first enterprise to leverage this partnership, utilizing AI to innovate its marketing strategies and improve customer experiences. Bain’s Worldwide Managing Partner, Manny Maceda, emphasized AI’s transformative potential in reshaping business operations across industries
- In February 2023, Dealtale, a subsidiary of Vianai and a pioneer in causal AI for marketers, introduced Marketing Co-Pilot. This ChatGPT-like feature enables marketers to query past, present, and future performance metrics, receiving instant insights drawn from multiple marketing and sales platforms, including Salesforce, HubSpot, Google Analytics, and social media channels
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Research Methodology
Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.
The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.
Customization Available
Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.