Global Artificial Intelligence in Aviation Market, By Offering (Services, Hardware, and Software), Technology (Computer Vision, Machine Learning, Context Awareness Computing, and Natural Language Processing), Application (Dynamic Pricing, Virtual Assistants, Flight Operations, Smart Maintenance, Manufacturing, Surveillance, Training, and Other Applications) – Industry Trends and Forecast to 2031.
Artificial Intelligence in Aviation Market Analysis and Size
The artificial intelligence in aviation market is utilized for enhancing safety measures, optimizing operations, and improving passenger experience across various segments of the aviation industry. AI is applied in flight operations for route optimization, predictive maintenance to minimize downtime, and air traffic management for efficient navigation. For instance, Airbus utilizes AI algorithms to analyze aircraft data and predict potential failures, enabling proactive maintenance actions, thereby enhancing safety and reducing operational costs. Versatility in AI aviation extends to floor automation, customer service chatbots, and baggage handling optimization, transforming the industry.
Global artificial intelligence in aviation market size was valued at USD 4.33 billion in 2023 and is projected to reach a value of USD 90.38 billion by 2031, with a CAGR of 46.2% during the forecast period of 2024 to 2031. In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include in-depth expert analysis, geographically represented company-wise production and capacity, network layouts of distributors and partners, detailed and updated price trend analysis and deficit analysis of supply chain and demand.
Report Scope and Market Segmentation
Report Metric
|
Details
|
Forecast Period
|
2024 to 2031
|
Base Year
|
2023
|
Historic Years
|
2022 (Customizable to 2016-2021)
|
Quantitative Units
|
Revenue in USD Billion, Volumes in Units, Pricing in USD
|
Segments Covered
|
Offering (Services, Hardware, and Software), Technology (Computer Vision, Machine Learning, Context Awareness Computing, and Natural Language Processing), Application (Dynamic Pricing, Virtual Assistants, Flight Operations, Smart Maintenance, Manufacturing, Surveillance, Training, and Other Applications)
|
Countries Covered
|
U.S., Canada, Mexic, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, and Rest of Middle East and Africa
|
Market Players Covered
|
IBM (U.S.), Microsoft (U.S.), Amazon Web Services, Inc. (U.S.), Airbus S.A.S. (U.S.), Xilinx (U.S.), NVIDIA Corporation (U.S.), Intel Corporation (U.S.), General Electric (U.S.), Micron Technology, Inc., (U.S.), , Lockheed Martin Corporation (U.S.), SAMSUNG (Sout Korea), Thales(France), MINDTITAN (Estonia), and Mitsubishi Electric Corporation (Japan) among others
|
Market Opportunities
|
|
Market Definition
Artificial intelligence in aviation refers to the use of computer systems to perform tasks that generally require human intelligence, such as piloting aircraft, managing air traffic, and analyzing data. AI enhances safety, efficiency, and decision-making in aviation by automating processes, detecting anomalies, and providing insights from vast amounts of information. It enables advancements such as autonomous flight, predictive maintenance, and personalized passenger experiences, transforming the industry.
Artificial Intelligence in Aviation Market Dynamics
Drivers
- Enhanced Safety Measures Through AI Integration
AI algorithms analyze vast amounts of data from various sources including sensors, weather patterns, and historical flight data to predict potential safety hazards and mitigate risks proactively. These systems offer real-time monitoring of aircraft systems, airspace conditions, and pilot behavior, enabling rapid response to potential threats. Through leveraging AI, airlines and aviation authorities can identify safety issues before they escalate, leading to fewer accidents, improved incident response, and ultimately, a safer environment for passengers, crew, and assets, thereby fostering trust and driving the adoption of AI technologies in the aviation industry.
For instance,
- Major Germam airlines such as Lufthansa use AI algorithms to predict aircraft component failures, enhancing safety. Their predictive maintenance system analyzes data from sensors and historical records to preemptively address issues, reducing accidents and improving response
- Streamlined Air Traffic Management Systems
AI technologies optimize airspace usage, route planning, and traffic flow management, reducing congestion and delays. AI enables more efficient and flexible decision-making by air traffic controllers by analyzing vast amounts of data, including flight trajectories, and airport operations. This results in enhanced safety, reduced fuel consumption and minimized environmental impact. In addition, AI-driven automation streamlines communication and coordination among stakeholders, improving overall operational efficiency. As air travel demand continues to grow, the adoption of AI in air traffic management becomes essential for managing increasing complexity, ensuring smoother operations, and driving market growth.
For instance,
- NASA's Advanced Air Mobility project represents a development in urban air transportation. The project aims to optimize routes, minimize congestion, and reduce environmental impact by leveraging AI algorithms to analyze flight trajectories and airspace data. This initiative underscores the potential of AI-driven solutions to revolutionize air mobility, ensuring safer and more efficient transportation in increasingly congested urban environments
Opportunities
- Technological Advancement in Barcode Reading
Airlines can optimize routes to avoid hazardous weather conditions, reducing the risk of turbulence, lightning strikes, and other weather-related incidents by integrating these forecasts into flight planning and decision-making processes. This proactive approach enhances flight safety, minimizes disruptions, and improves passenger experience. As airlines prioritize safety and efficiency, the demand for AI-powered weather forecasting solutions continues to grow, driving innovation and investment in the aviation industry.
- Crew Training and Simulation
Use AI-driven simulations and training systems for pilot and crew training. AI can simulate various scenarios, environments, and emergencies to train pilots and crew members effectively, improve decision-making skills, and enhance safety measures. AI enables dynamic scenario generation, providing tailored training experiences for different skill levels and aircraft types. Moreover, continuous data analysis from training sessions empowers personalized feedback and performance evaluation, fostering continuous improvement. Ultimately, AI-driven training solutions contribute to elevated safety standards, ensuring aviation professionals are well-prepared to handle any challenge they may encounter in the skies.
Restraints/Challenges
- Dependency on Reliable Internet Connectivity
AI systems thrive on real-time data processing and communication, they are inherently reliant on uninterrupted internet access. In remote or airspace-constrained regions, where connectivity may be limited or intermittent, the effectiveness of AI applications can be compromised. This dependency introduces vulnerabilities to critical functions such as flight planning, weather monitoring, and communication with ground control. Moreover, in-flight connectivity solutions may not always guarantee the level of reliability required for seamless AI operations. As a result, the aviation industry faces challenges in fully leveraging AI technologies across its operations, hindering widespread adoption and innovation.
- Limited Availability of Skilled AI Professionals
Developing and implementing AI solutions tailored to aviation require specialized expertise in both AI technologies and aviation operations. However, the intersection of these domains remains relatively niche, resulting in a scarcity of qualified professionals. This shortage hampers the timely deployment and optimization of AI applications in aviation, leading to delays, increased costs, and suboptimal performance. Furthermore, competition for AI talent from other industries exacerbates the challenge, making it difficult for aviation companies to attract and retain top-tier AI experts. As a result, the pace of AI adoption in aviation lags behind its potential, impeding innovation and competitiveness.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market, contact data bridge market research for an analyst brief, our team will help you take an informed market decision to achieve market growth.
Impact and Current Market Scenario of Raw Material Shortage and Shipping Delays
Data Bridge Market Research offers a high-level analysis of the market and delivers information by keeping in account the impact and current market environment of raw material shortage and shipping delays. This translates into assessing strategic possibilities, creating effective action plans, and assisting businesses in making important decisions.
Apart from the standard report, we also offer in-depth analysis of the procurement level from forecasted shipping delays, distributor mapping by region, commodity analysis, production analysis, price mapping trends, sourcing, category performance analysis, supply chain risk management solutions, advanced benchmarking, and other services for procurement and strategic support.
Expected Impact of Economic Slowdown on the Pricing and Availability of Products
When economic activity slows, industries begin to suffer. The forecasted effects of the economic downturn on the pricing and accessibility of the products are taken into account in the market insight reports and intelligence services provided by DBMR. With this, our clients can typically keep one step ahead of their competitors, project their sales and revenue, and estimate their profit and loss expenditures.
Recent Developments
- In October 2022, Searidge Technologies created an AI powered software using NVIDIA GPUs. Its digital tower and apron solutions, use vision AI to manage traffic control for the airports and alert users of safety concern in real time. This innovative technology not only improves airport operations but also boosts market growth by increasing the attractiveness of airports as safer, more efficient hubs, consequently driving demand for Searidge's cutting-edge solutions
- In April 2022, Banglore International Airport Limited (BIAL) collaborated with Amazon to establish a Joint Innovation Center (JIC) and accelerated innovation in aviation. This collaboration fosters the development of new technologies and solutions tailored to the aviation industry's needs, enhancing operational efficiency, passenger experience, and safety standards. As a result, it stimulates market growth by driving innovation, attracting investment, and positioning BIAL as a leader in aviation advancement
Artificial Intelligence in Aviation Market Scope
The artificial intelligence in aviation market is segmented into three notable segments which are based on offering, technology, and application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Offering
- Services
- Hardware
- Software
Technology
- Computer Vision
- Machine Learning
- Context Awareness Computing
- Natural Language Processing
Application
- Dynamic Pricing
- Virtual Assistants
- Flight Operations
- Smart Maintenance
- Manufacturing
- Surveillance
- Training
- Other Applications
Artificial Intelligence in Aviation Market Regional Analysis/Insights
The market is analyzed and market size insights and trends are provided by offering, technology, and application as referenced above.
The countries covered in the market report are U.S., Canada, Mexic, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, and Rest of Middle East and Africa.
North America dominates the artificial intelligence in aviation market and will continue to flourish its trend of dominance due to the swift industrialization and presence of major key players in this region.
Asia-Pacific is expected to be the fastest-growing region in the artificial intelligence in aviation market due to the growing demand for AI technologies in the aviation sector. A significant presence in the top market player in the region which provides all the services and products in the market to the vast market size
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Competitive Landscape Artificial Intelligence in Aviation Market Share Analysis
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Some of the major players operating in the market are:
- IBM (U.S.)
- Microsoft (U.S.)
- Amazon Web Services, Inc. (U.S.)
- Airbus S.A.S. (U.S.)
- Xilinx (U.S.)
- NVIDIA Corporation (U.S.)
- Intel Corporation (U.S.)
- General Electric (U.S.)
- Micron Technology, Inc., (U.S.)
- Lockheed Martin Corporation (U.S.)
- SAMSUNG (South Korea)
- Thales(France)
- MINDTITAN (Estonia)
- Mitsubishi Electric Corporation (Japan)
SKU-