Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market, By Application (Novel Drug Candidates, Drug Optimization and Repurposing Preclinical Testing and Approval, Drug Monitoring, Finding New Diseases Associated Targets and Pathways, Understanding Disease Mechanisms, Aggregating and Synthesizing Information, Formation & Qualification of Hypotheses, De Novo Drug Design, Finding Drug Targets of an Old Drug and Others), Technology (Machine Learning, Deep Learning, Natural Language Processing and Others), Drug Type (Small Molecule and Large Molecule), Offering (Software and Services), Indication (Immuno-Oncology, Neurodegenerative Diseases, Cardiovascular Diseases, Metabolic Diseases and Others), End Use (Contract Research Organizations (CROs), Pharmaceutical & Biotechnology Companies, Research Centers and Academic Institutes and Others) Industry Trends and Forecast to 2029.
Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market Analysis and Insights
Artificial Intelligence (AI) is expected to be a lucrative technology in the healthcare industry. The implementation of AI reduces R&D gap in the drug manufacturing process and helps in targeted manufacturing of drug. Hence, biopharmaceutical companies are turning to AI to enhance their market share. AI for drug discovery is a technology that uses machines to simulate human intelligence to solve complicated challenges in the drug development procedure.
The adoption of AI solutions in the clinical trial process eliminates possible obstacles, reduces clinical trial cycle time, and increases the productivity and accuracy of the clinical trial process. Technological advancements in AI for drug discovery and reduction in total time involved in drug discovery process are other factors driving the market growth in the forecast period. However, low quality and inconsistent available data will obstruct the market growth. Also, high cost associated with technology and technical limitations will restrain the market growth.
Data Bridge Market Research analyzes that the Asia-Pacific Artificial Intelligence (AI) in drug discovery market is expected to reach the value of USD 3,424.04 million by 2029, at a CAGR of 50.9% during the forecast period. Software accounts for the largest technology segment in the market due to rapid developments in technological advancements to commercialize the use of AI in drug discovery market. This market report also covers pricing analysis, patent analysis, and technological advancements in depth.
Report Metric
|
Details
|
Forecast Period
|
2022 to 2029
|
Base Year
|
2021
|
Historic Years
|
2020 (Customizable to 2019-2014)
|
Quantitative Units
|
Revenue in USD Million, Pricing in USD
|
Segments Covered
|
By Application (Novel Drug Candidates, Drug Optimization and Repurposing Preclinical Testing and Approval, Drug Monitoring, Finding New Diseases Associated Targets and Pathways, Understanding Disease Mechanisms, Aggregating and Synthesizing Information, Formation & Qualification of Hypotheses, De Novo Drug Design, Finding Drug Targets of an Old Drug and Others), Technology (Machine Learning, Deep Learning, Natural Language Processing and Others), Drug Type (Small Molecule and Large Molecule), Offering (Software and Services), Indication (Immuno-Oncology, Neurodegenerative Diseases, Cardiovascular Diseases, Metabolic Diseases and Others), End Use (Contract Research Organizations (CROs), Pharmaceutical & Biotechnology Companies, Research Centers and Academic Institutes and Others)
|
Countries Covered
|
China, Japan, India, South Korea, Singapore, Thailand, Malaysia, Australia & New Zealand, Philippines, Indonesia, rest of Asia-Pacific
|
Market Players Covered
|
Some of the key players operating in the market are NVIDIA Corporation, IBM Corp., Atomwise Inc., Microsoft, Benevolent AI, Aria Pharmaceuticals, Inc., DEEP GENOMICS, Exscientia, Cloud, Insilico Medicine, Cyclica, NuMedii, Inc., Envisagenics, Owkin Inc., BERG LLC, Schrödinger, Inc., XtalPi Inc., and BIOAGE Inc. among others
|
Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market Definition
AI has caught the attention and minds of medical technology practitioners in the past few years, as several companies and major research laboratories have worked to perfect these technologies for clinical use. The first commercialized demonstrations of how AI (also known as Deep Learning (DL), Machine Learning (ML), or Artificial Neural Networks (ANNs)) could assist clinicians are now available. These systems could lead to a paradigm shift in clinician workflow, and increase productivity while simultaneously enhancing treatment and patient throughput. AI for drug discovery is a technology that uses machines to simulate human intelligence to solve complicated challenges in the drug development procedure. The adoption of AI solutions in the clinical trial process eliminates possible obstacles, reduces clinical trial cycle time, and increases the productivity and accuracy of the clinical trial process. Therefore, the adoption of these advanced AI solutions in drug discovery processes is gaining popularity amongst life science industry stakeholders. In the pharmaceutical sector, it aids in the discovery of novel compounds, therapeutic target identification, and the development of customized medications. AI platforms used for drug discovery can prove to be a feasible option for deriving insights into the discovery of drugs to treat and minimize the severity of various chronic diseases.
Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market Dynamics
This section deals with understanding the market drivers, advantages, opportunities, restraints, and challenges. All of this is discussed in detail below:
Drivers
- Rise in incidence of chronic diseases propels need for AI in drug discovery
The incidence of chronic diseases is increasing at a rapid pace across the globe. According to the Centers for Disease Control and Prevention (CDC), six in 10 adults in the U.S. have a chronic disease. Furthermore, the CDC also highlights that chronic diseases such as heart disease and diabetes are the leading causes of death in the U.S. Such statistics shed light on the growing prevalence of chronic diseases and the need to bring down the fatality rate caused due to these diseases.
AI platforms used for drug discovery can prove to be a feasible option for deriving insights into the discovery of drugs to treat and minimize the severity of various chronic diseases. Thus, these factors are expected to act as a driver for the market growth during the forecast period.
- Strategic collaborations, partnerships, and products launch
AI has the potential to transform drug discovery by rapidly accelerating the R&D timeline, making drug development cheaper and faster, and improving the probability of approval. AI can also increase the effectiveness of drug repurposing research.
An increase in cross-industry alliances and collaborations drives the market. Rise in relevance of AI in drug discovery & development, and a surge in funding for R&D activities, including AI technology in the field of drug research, are projected to propel the global market growth. Hence, increase in cross-industry collaborations and partnerships is driving the market.
Restraint
- High cost associated with technology and technical limitations
The current healthcare sector is facing several complex challenges, such as the increased cost of drugs and therapies, and society needs specific significant changes in this area. The entire success of AI depends on the availability of a substantial amount of data because these data are used for the subsequent training provided to the system. Access to data from various database providers can incur extra costs for a company. Clinical trials are directed towards establishing the safety and efficacy of a drug product in humans for a particular disease condition and require six to seven years along with a substantial financial investment. However, only one out of ten molecules entering these trials gain successful clearance, which is a massive loss for the industry. These failures can result from inappropriate patient selection, shortage of technical requirements, and poor infrastructure. Thus, increasing costs with the technology is acting as a restraint for the market growth.
Opportunity
-
Rise in the investments for R&D
The rise in R&D activities and increasing adoption of cloud-based services and applications will provide beneficial opportunities for market growth.
The industry of AI in biopharma continues to grow after a long period of sepsis. This is reflected in the ongoing flow of investments and increase in the number of collaborations between pharmaceutical corporations and AI companies in 2021 to the previous years. The Biopharma industry’s growth is largely influenced by the active engagement of leading pharmaceutical corporations in AI-related investments. The number of scientific publications in the field of AI in Biopharma, and research collaborations between pharma companies and AI-expertise vendors are rapidly increasing, yet, some pharma corporations are still critical of AI applications. ML and AI applications in the pharmaceutical and healthcare industries lead to the formation of a new interdisciplinary field of data-driven drug discovery in healthcare. Thus, rise in investment in R&D activities is acting as an opportunity for market growth.
Challenge
- Lack of skilled professionals
The shortage of skilled professionals is expected to hamper the market growth. The employees have to re-train or learn new skill sets to work efficiently on the complex AI machines to get the desired results for the drug. This challenge that prevents full-fledged adoption of AI in the pharmaceutical industry includes the lack of skilled personnel to operate AI-based platforms, limited budget for small organizations, apprehension of replacing humans leading to job loss, skepticism about the data generated by AI, and the black box phenomenon (that is, how the conclusions are reached by the AI platform). The shortage of skills acts as a major hindrance to drug discovery through AI, discouraging companies to adopt AI-based machines for drug discovery.
As skill demands are too high, it has manifested as a challenge to retain and manage skill-specified professionals. Moreover, technological advancement is another aspect that leads to the increased demand for skilled professionals. There is an urgent need for the education of professionals for AI-based technology. Lack of trained and experienced professionals and persistent skill gaps limit the employability prospects and access to quality jobs. It is therefore apparent that the availability of professionals equipped with adequate skills is challenging the market growth.
Post-COVID-19 Impact on Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market
The COVID-19 outbreak had a beneficial impact on the expansion of AI in drug discovery industry due to its widespread use by various organizations for the identification as well as screening of existing medicines used in the treatment of COVID-19. AI is useful in detecting active chemicals for the prevention of SARS-CoV, HIV, SARS-CoV-2, influenza virus, and others. During the pandemic, economies all over the world relied on AI-based medication discovery rather than traditional vaccine detection processes, which take years to create and are equally expensive, contributing to the growth of the market.
Manufacturers are making various strategic decisions to bounce back post-COVID-19. The players are conducting multiple R&D activities to improve the technology involved in the Wireless microphone. With this, the companies will bring advanced and accurate AI software to the market.
Recent Developments
- In March 2022, NVIDIA Corporation launched Clara Holoscan MGX to develop and deploy real-time AI applications. Clara Holoscan MGX expands the Clara Holoscan platform to provide an all-in-one, medical-grade reference architecture, as well as long-term software support, to accelerate innovation in the medical device industry. This will help the company for better AI performance in health sector for surgery, diagnostics, and drug discovery.
- In May 2022, Benevolent AI, a leading clinical-stage AI-enabled drug discovery company, announced that AstraZeneca has selected an additional novel target for Idiopathic Pulmonary Fibrosis (IPF) for its drug development portfolio, resulting in a milestone payment to Benevolent AI. This is the third novel target from the collaboration that has been identified using the Benevolent Platform across two disease areas, IPF and chronic kidney disease, and subsequently validated and selected for portfolio entry by AstraZeneca. This builds upon the recent extension of the collaboration with AstraZeneca to include two new disease areas, systemic lupus erythematosus, and heart failure, signed in January 2022. This has helped the company to make its collaboration stronger.
Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market Scope
Asia-Pacific Artificial Intelligence (AI) in drug discovery market is segmented into application, technology, drug type, offering, indication, and end use. The growth among segments helps you analyze niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
APPLICATION
- Novel Drug Candidates
- Drug Optimization and Repurposing Preclinical Testing and Approval
- Drug Monitoring
- Finding New Diseases Associated Targets and Pathways
- Understanding Disease Mechanisms
- Aggregating and Synthesizing Information
- Formation & Qualification of Hypotheses
- De Novo Drug Design
- Finding Drug Targets of an Old Drug
- Others
Based on application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation & qualification of hypotheses, de novo drug design, finding drug targets of an old drug, and others.
TECHNOLOGY
- Machine Learning (ML)
- Deep Learning (DL)
- Natural Language Processing (NLP)
- Others
Based on technology, the market is segmented into Machine Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), and others.
DRUG TYPE
- Small Molecule
- Large Molecule
Based on drug type, the market is segmented into small molecule and large molecule.
OFFERING
- Software
- Services
Based on offering, the market is segmented into software and services.
INDICATION
- Immuno-Oncology
- Neurodegenerative Diseases
- Cardiovascular Diseases
- Metabolic Diseases
- Others
Based on indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others.
END USE
- Pharmaceutical & Biotechnology Companies
- Contract Research Organizations (CROs)
- Research Centres And Academic Institutes
- Others
Based on end use, the market is segmented into pharmaceutical & biotechnology companies, Contract Research Organizations (CROs), research centers and academic institutes, and others.
Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market Regional Analysis/Insights
The Asia-Pacific Artificial Intelligence (AI) in drug discovery market is analyzed and market size information is provided by application, technology, drug type, offering, indication, and end use.
The countries covered in this market report are China, Japan, India, South Korea, Singapore, Thailand, Malaysia, Australia & New Zealand, Philippines, Indonesia, rest of Asia-Pacific.
- In 2022, Asia-Pacific is the third most dominating region due to the higher demand for infectious diseases diagnostic kits due to increasing patient pool and rising awareness among people. China is expected to grow due to rise in technological advancements in AI for drug discovery.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts, and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of Asia-Pacific brands and their challenges faced due to large or scarce competition from local and domestic brands, and impact of sales channels are considered while providing forecast analysis of the country data.
Competitive Landscape and Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market Share Analysis
Asia-Pacific Artificial Intelligence (AI) in drug discovery market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in R&D, new market initiatives, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, product approvals, patents, product width and breath, application dominance, technology lifeline curve. The above data points provided are only related to the company’s focus on the Asia-Pacific Artificial Intelligence (AI) in drug discovery market.
Some of the key players operating in the market are NVIDIA Corporation, IBM Corp., Atomwise Inc., Microsoft, Benevolent AI, Aria Pharmaceuticals, Inc., DEEP GENOMICS, Exscientia, Cloud, Insilico Medicine, Cyclica, NuMedii, Inc., Envisagenics, Owkin Inc., BERG LLC, Schrödinger, Inc., XtalPi Inc. and BIOAGE Inc. among others.
SKU-