Relatório de Análise de Tamanho, Participação e Tendências do Mercado de Redes Neurais de Aprendizado Profundo (DNNs) na Europa – Visão Geral do Setor e Previsão até 2032

Pedido de resumo Pedido de TOC Fale com Analista Fale com o analista Relatório de amostra grátis Relatório de amostra grátis Consulte antes Comprar Consulte antes  Comprar agora Comprar agora

Relatório de Análise de Tamanho, Participação e Tendências do Mercado de Redes Neurais de Aprendizado Profundo (DNNs) na Europa – Visão Geral do Setor e Previsão até 2032

  • ICT
  • Upcoming Reports
  • Oct 2021
  • Europe
  • 350 Páginas
  • Número de tabelas: 220
  • Número de figuras: 60

Europe Deep Learning Neural Networks Dnns Market

Tamanho do mercado em biliões de dólares

CAGR :  % Diagram

Chart Image USD 11.50 Billion USD 37.96 Billion 2024 2032
Diagram Período de previsão
2025 –2032
Diagram Tamanho do mercado (ano base )
USD 11.50 Billion
Diagram Tamanho do mercado ( Ano de previsão)
USD 37.96 Billion
Diagram CAGR
%
Diagram Principais participantes do mercado
  • ALYUDA analysisLLC
  • ALPHABET INC.
  • IBM
  • Neural Technologies restricted
  • NEURODIMENSIONInc.

Segmentação do mercado de redes neurais de aprendizado profundo (DNNs) na Europa por tipo de produto (plataformas de software, aceleradores de hardware, serviços), tecnologia (CNNs, RNNs, GANs, transformadores, outros), aplicação (diagnóstico de saúde, veículos autônomos, serviços financeiros, varejo, manufatura, outros), implantação (baseada em nuvem, no local), usuário final (empresas, provedores de saúde, fabricantes automotivos, instituições financeiras, agências governamentais, outros) – Tendências do setor e previsão até 2032

Redes Neurais de Aprendizado Profundo (DNNs) Mercado Z

Tamanho do mercado de redes neurais de aprendizado profundo (DNNs)

  • O tamanho do mercado europeu de Redes Neurais de Aprendizado Profundo (DNNs) foi avaliado em US$ 11,50 bilhões em 2024  e deve atingir  US$ 37,96 bilhões até 2032 , com um CAGR de 16,1% durante o período previsto.
  • Esse crescimento substancial é impulsionado principalmente pela ampla adoção de tecnologias de inteligência artificial (IA), pelo aumento dos investimentos em infraestrutura de aprendizado de máquina e pela crescente demanda por análises avançadas de dados em setores como saúde, automotivo, financeiro e varejo. A proliferação do big data, aliada aos avanços em poder computacional, está acelerando ainda mais a expansão do mercado.
  • A liderança da região em inovação tecnológica, apoiada por investimentos significativos em pesquisa e desenvolvimento (P&D), iniciativas governamentais que promovem a adoção da IA ​​e uma forte presença de empresas líderes em tecnologia, é um fator fundamental para a trajetória ascendente do mercado. Além disso, a crescente integração de redes digitais de domínio (DNNs) em sistemas autônomos, manufatura inteligente e serviços personalizados ao consumidor está gerando uma demanda significativa por soluções de aprendizado profundo em toda a Europa.

Análise de mercado de redes neurais de aprendizado profundo (DNNs)

  • Redes Neurais de Aprendizado Profundo (DNNs) são algoritmos avançados de IA projetados para imitar processos cerebrais humanos, permitindo que máquinas processem vastos conjuntos de dados, reconheçam padrões e tomem decisões baseadas em dados. Esses sistemas, incluindo plataformas de software, aceleradores de hardware como GPUs e TPUs, e serviços profissionais, são essenciais para aplicações em diagnósticos de saúde, veículos autônomos, modelagem financeira, personalização do varejo e automação da manufatura.
  • O mercado é significativamente impulsionado pelo domínio europeu em inovação em IA, com a região respondendo por mais de 40% dos gastos globais em P&D em IA em 2023, liderada pelos Estados Unidos. A rápida adoção de veículos autônomos, com mais de 1,2 milhão de carros autônomos previstos para circular nas estradas alemãs até 2027, impulsiona a demanda por redes de área de trabalho remota (DNNs) para processamento de imagens e dados de sensores em tempo real.
  • Avanços tecnológicos, como modelos baseados em transformadores e IA generativa, estão aprimorando as capacidades das Redes de Redes de Computador (DNN), possibilitando aplicações em processamento de linguagem natural (PLN), visão computacional e análise preditiva. As iniciativas de IA do governo alemão, como o Recurso Nacional de Pesquisa em IA (NAIRR), estão fomentando a inovação e apoiando o crescimento do mercado.
  • A Alemanha domina o mercado com uma participação de receita de 42,1% em 2024, avaliada em US$ 10,29 bilhões, impulsionada por seu robusto ecossistema de tecnologia, presença de grandes players como NVIDIA e Google e investimentos significativos em infraestrutura de IA.
  • Espera-se que a França testemunhe a maior taxa de crescimento, com um CAGR projetado de 16,8% de 2025 a 2032, impulsionado pelo apoio do governo à pesquisa de IA e à crescente adoção nos setores de saúde e automotivo.
  • Entre os tipos de produtos, o segmento de plataformas de software detinha a maior fatia de mercado de 48,7% em 2024, atribuído ao uso generalizado de estruturas de aprendizado profundo como TensorFlow e PyTorch em aplicativos empresariais e de pesquisa.

Escopo do Relatório e Segmentação do Mercado de Redes Neurais de Aprendizado Profundo (DNNs) na Europa    

Atributos

Principais insights de mercado sobre redes neurais de aprendizado profundo (DNNs) na Europa

Segmentos abrangidos

  • Por tipo de produto : plataformas de software, aceleradores de hardware, serviços
  • Por tecnologia : Redes Neurais Convolucionais (CNNs), Redes Neurais Recorrentes (RNNs), Redes Adversariais Generativas (GANs), Transformadores, Outros
  • Por aplicação : Diagnóstico de saúde, veículos autônomos, serviços financeiros, varejo e comércio eletrônico, automação de manufatura, outros
  • Por implantação : baseado em nuvem, no local
  • Por usuário final : empresas, provedores de saúde, fabricantes de automóveis, instituições financeiras, agências governamentais, outros

Países abrangidos

Europa

  • Alemanha
  • França
  • Reino Unido
  • Holanda
  • Suíça
  • Bélgica
  • Rússia
  • Itália
  • Espanha
  • Peru

Principais participantes do mercado

  • NVIDIA Corporation (Estados Unidos)
  • Google LLC (Estados Unidos)
  • Microsoft Corporation (Estados Unidos)
  • Amazon Web Services, Inc. (Estados Unidos)
  • Intel Corporation (Estados Unidos)
  • IBM Corporation (Estados Unidos)
  • Advanced Micro Devices, Inc. (AMD) (Estados Unidos)
  • Meta AI (Estados Unidos)
  • Qualcomm Incorporated (Estados Unidos)
  • Oracle Corporation (Estados Unidos)
  • SAS Institute Inc. (Estados Unidos)
  • Palantir Technologies Inc. (Estados Unidos)
  • H2O.ai (Estados Unidos)
  • DataRobot, Inc. (Estados Unidos)
  • Cerebras Systems Inc. (Estados Unidos)
  • xAI (Estados Unidos)

Oportunidades de mercado

  • Rápida expansão de aplicações orientadas por IA em veículos autônomos, sistemas de saúde inteligentes e experiências de varejo personalizadas em toda a Europa.
  • Crescente demanda por soluções DNN baseadas em nuvem, permitindo implantação de IA escalável e econômica para empresas e pequenos negócios.

Conjuntos de informações de dados de valor agregado

Além dos insights sobre cenários de mercado, como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research também incluem análises aprofundadas de especialistas, análises de preços, análises de participação de marca, pesquisas com consumidores, análises demográficas, análises da cadeia de suprimentos, análises da cadeia de valor, visão geral de matérias-primas/consumíveis, critérios de seleção de fornecedores, análise PESTLE, análise de Porter e estrutura regulatória.

Tendências de mercado de redes neurais de aprendizado profundo (DNNs)

IA Generativa, Modelos de Transformadores, Computação de Ponta e Soluções de IA Sustentáveis

  • A adoção de IA generativa e modelos baseados em transformadores é uma tendência proeminente, com mais de 30% das novas implantações de DNN em 2024 aproveitando essas tecnologias para aplicações em PNL, geração de imagens e produção de conteúdo criativo, aprimorando as experiências do usuário no varejo e na mídia.
  • A ascensão da computação de ponta, com 25% das novas soluções DNN em 2024 projetadas para processamento no dispositivo, está ganhando força em veículos autônomos e aplicativos de IoT, reduzindo a latência e melhorando a tomada de decisões em tempo real.
  • Foco crescente em soluções de IA sustentáveis, com 15% dos novos aceleradores de hardware em 2024 certificados para eficiência energética, alinhando-se com as iniciativas de tecnologia verde da Europa e reduzindo o impacto ambiental da computação de IA.
  • A adoção de plataformas DNN baseadas em nuvem está crescendo rapidamente, com um aumento de 20% nas taxas de adoção em 2024, impulsionada por soluções escaláveis ​​e flexíveis oferecidas por provedores como AWS, Microsoft Azure e Google Cloud.
  • A integração de DNNs com ecossistemas de IoT, especialmente em manufatura inteligente e saúde, está se expandindo, com 18% das novas soluções em 2024 projetadas para análise de dados em tempo real e automação nesses setores.
  • A crescente demanda do consumidor por serviços personalizados baseados em IA, como sistemas de recomendação no varejo e diagnósticos preditivos na área da saúde, está impulsionando a inovação em aplicações DNN em toda a Europa.

Dinâmica de mercado de redes neurais de aprendizado profundo (DNNs)

Motorista

“Adoção de IA, Proliferação de Big Data, Sistemas Autônomos, Apoio Governamental e Avanços Tecnológicos”

  • A ampla adoção de tecnologias de IA em todos os setores, com o mercado europeu de IA projetado para atingir US$ 200 bilhões até 2027, gera uma demanda significativa por DNNs em aplicações como diagnósticos de saúde, direção autônoma e modelagem financeira.
  • A proliferação de big data, com empresas europeias gerando mais de 2,5 exabytes de dados diariamente em 2023, alimenta a necessidade de DNNs avançadas para processar e analisar conjuntos de dados complexos para obter insights acionáveis.
  • A rápida expansão do desenvolvimento de veículos autônomos, com mais de 1,2 milhão de carros autônomos projetados para circular nas estradas da Alemanha até 2027, aumenta a demanda por DNNs em processamento de imagens em tempo real, fusão de sensores e algoritmos de tomada de decisão.
  • Iniciativas governamentais, como a Iniciativa Nacional de IA da França e a Estratégia Pan-Canadense de IA, fornecem financiamento substancial e suporte regulatório para pesquisa de IA, promovendo inovação e adoção de DNNs em todos os setores.
  • Avanços em aceleradores de hardware, como as GPUs A100 da NVIDIA e as TPUs do Google, melhoram o desempenho do DNN, permitindo treinamento e inferência mais rápidos para modelos complexos em data centers e dispositivos de ponta.
  • A crescente demanda por experiências personalizadas do consumidor, com 65% dos varejistas alemães adotando sistemas de recomendação baseados em IA em 2023, impulsiona a integração de DNNs em aplicativos de varejo, comércio eletrônico e atendimento ao cliente.

Restrição/Desafio

Altos custos de desenvolvimento, preocupações com a privacidade de dados, escassez de habilidades, consumo de energia e complexidades regulatórias

  • O alto custo de desenvolvimento e implantação de DNNs, especialmente para aceleradores de hardware personalizados e modelos de IA em larga escala, representa um desafio para a adoção entre pequenas e médias empresas, limitando a escalabilidade do mercado em segmentos sensíveis a custos.
  • Preocupações com a privacidade de dados, motivadas por regulamentações como a Lei de Privacidade do Consumidor da Califórnia (CCPA) e a Lei de Proteção de Informações Pessoais e Documentos Eletrônicos da França (PIPEDA), aumentam os custos de conformidade e a complexidade para provedores de DNN que lidam com dados confidenciais.
  • A escassez de habilidades em IA e conhecimento especializado em aprendizado profundo, com um déficit projetado de 250.000 profissionais de IA na Europa até 2026, representa desafios para a implementação, manutenção e inovação em tecnologias DNN.
  • O alto consumo de energia dos processos de treinamento e inferência de DNN, com modelos de grande escala consumindo até 500 MWh anualmente, levanta preocupações sobre sustentabilidade e custos operacionais, especialmente em data centers.
  • A rápida obsolescência tecnológica, impulsionada por avanços contínuos em algoritmos e hardware de IA, pressiona as empresas a investir pesadamente em P&D, reduzindo a lucratividade de empresas menores e limitando a inovação a longo prazo.
  • Complexidades regulatórias, como diferentes estruturas de governança de IA na Alemanha e na França, criam desafios para a implantação e conformidade padronizadas de DNN, aumentando a sobrecarga operacional para os provedores.

Escopo do mercado de redes neurais de aprendizado profundo (DNNs) na Europa

O mercado europeu de redes neurais de aprendizado profundo (DNNs) é segmentado com base no tipo de produto, tecnologia, aplicação, implantação e usuário final para fornecer uma compreensão abrangente da dinâmica do mercado e das oportunidades de crescimento.

  • Por tipo de produto

Com base no tipo de produto, o mercado é segmentado em plataformas de software, aceleradores de hardware e serviços. O segmento de plataformas de software dominou, com uma participação de 48,7% na receita em 2024, avaliada em US$ 6,09 bilhões, impulsionada pelo amplo uso de frameworks como TensorFlow, PyTorch e Keras em aplicações empresariais e de pesquisa. O segmento de serviços deverá crescer a uma CAGR de 16,5%, a mais rápida, entre 2025 e 2032, impulsionado pela demanda por serviços de consultoria e implementação de IA.

Por Tecnologia

Com base na tecnologia, o mercado é segmentado em Redes Neurais Convolucionais (CNNs), Redes Neurais Recorrentes (RNNs), Redes Adversariais Generativas (GANs), Transformadores e outros. O segmento de CNNs detinha a maior participação, de 40,2%, em 2024, impulsionado por seu uso em reconhecimento de imagem e veículos autônomos. Espera-se que o segmento de Transformadores cresça a uma CAGR (taxa composta de crescimento anual) mais rápida, de 17,1%, de 2025 a 2032, impulsionado pelos avanços em PLN e IA generativa.

Por aplicação

Com base na aplicação, o mercado é segmentado em diagnósticos de saúde, veículos autônomos, serviços financeiros, varejo e e-commerce, automação industrial e outros. O segmento de diagnósticos de saúde foi responsável pela maior participação na receita, de 35,6% em 2024, impulsionado por imagens médicas e diagnósticos preditivos com tecnologia de IA. Espera-se que o segmento de veículos autônomos cresça a uma taxa composta de crescimento anual (CAGR) mais rápida, de 18,3%, entre 2025 e 2032, impulsionado pelo desenvolvimento de carros autônomos.

Por implantação

Com base na implantação, o mercado é segmentado em nuvem e on-premise. O segmento baseado em nuvem detinha uma participação significativa de 60,8% em 2024, impulsionado por soluções escaláveis ​​oferecidas pela AWS, Azure e Google Cloud. Espera-se que o segmento baseado em nuvem cresça a uma CAGR (taxa composta de crescimento anual) mais rápida, de 16,9%, de 2025 a 2032, impulsionado pela demanda por implantação de IA flexível e econômica.

Por usuário final


Com base no Usuário Final, o mercado é segmentado em empresas, provedores de saúde, fabricantes de automóveis, instituições financeiras, agências governamentais e outros. O segmento corporativo dominou, com uma participação de 42,1% na receita em 2024, impulsionado pela adoção de IA em análises de negócios. O segmento de provedores de saúde deve crescer a uma CAGR (taxa composta de crescimento anual) mais rápida, de 17,4%, de 2025 a 2032, impulsionado por diagnósticos baseados em IA e medicina personalizada.

Análise regional do mercado de redes neurais de aprendizado profundo (DNNs)

Visão do mercado de redes neurais de aprendizado profundo (DNNs) na Alemanha

A Alemanha liderou o mercado com uma participação de 42,1% na receita em 2024, avaliada em US$ 10,29 bilhões, impulsionada por seu robusto ecossistema de tecnologia, pela presença de players importantes como NVIDIA, Google e Microsoft, e por investimentos significativos em infraestrutura de IA. A liderança do país em veículos autônomos, IA para a área da saúde e serviços financeiros, aliada ao apoio governamental por meio da Iniciativa Nacional de IA, consolida sua posição dominante.

Visão do mercado de redes neurais de aprendizado profundo (DNNs) na França

A França está pronta para crescer à taxa composta de crescimento anual (CAGR) mais rápida, de 16,8%, entre 2025 e 2032, impulsionada por iniciativas governamentais como a Estratégia Pan-Canadense de IA, que apoia a pesquisa e a adoção de IA nos setores de saúde, automotivo e manufatura. A França representava 12,1% do mercado em 2024, com crescente adoção de redes digitais de domínio (DNNs) em cidades inteligentes e diagnósticos médicos.

Visão do mercado de redes neurais de aprendizado profundo (DNNs) do Reino Unido

O Reino Unido detinha uma participação de mercado de 5,6% em 2024, impulsionada pelos crescentes setores automotivo e de manufatura, que estão adotando cada vez mais a IA para automação e controle de qualidade. Os esforços do governo para promover a Indústria 4.0 e as parcerias com empresas de tecnologia locais apoiam o crescimento do mercado no Reino Unido.

Participação de mercado de redes neurais de aprendizado profundo (DNNs)

  • O setor de Redes Neurais de Aprendizado Profundo (DNNs) é liderado principalmente por empresas bem estabelecidas, incluindo:
  • NVIDIA Corporation (Estados Unidos)
  • Google LLC (Estados Unidos)
  • Microsoft Corporation (Estados Unidos)
  • Amazon Web Services, Inc. (Estados Unidos)
  • Intel Corporation (Estados Unidos)
  • IBM Corporation (Estados Unidos)
  • Advanced Micro Devices, Inc. (AMD) (Estados Unidos)
  • Meta AI (Estados Unidos)
  • Qualcomm Incorporated (Estados Unidos)
  • Oracle Corporation (Estados Unidos)
  • SAS Institute Inc. (Estados Unidos)
  • Palantir Technologies Inc. (Estados Unidos)
  • H2O.ai (Estados Unidos)
  • DataRobot, Inc. (Estados Unidos)
  • Cerebras Systems Inc. (Estados Unidos)
  • xAI (Estados Unidos)

Últimos desenvolvimentos no mercado europeu de redes neurais de aprendizado profundo (DNNs)

  • Em outubro de 2023, a NVIDIA revelou a GPU H200 Tensor Core, seu processador de última geração projetado para acelerar o treinamento e a inferência de redes neurais profundas (DNN). O H200 oferece desempenho até 20% melhor para cargas de trabalho de IA generativa em comparação com seus antecessores. Ele é otimizado para modelos de IA em larga escala, como transformadores e modelos de difusão, cruciais para aplicações em PLN e visão computacional. Grandes provedores de nuvem, incluindo AWS e Azure, já adotaram o H200 para alimentar suas plataformas de IA, aprimorando recursos em ambientes corporativos e de pesquisa.
  • Em janeiro de 2024, o Google Cloud lançou o Vertex AI Vision, uma nova adição à sua plataforma Vertex AI, voltada para análise de imagens e vídeos em tempo real usando aprendizado profundo. Essa solução baseada em nuvem oferece suporte a casos de uso no varejo (por exemplo, checkout inteligente, controle de estoque) e na indústria (por exemplo, detecção de defeitos). Ela oferece uma melhoria de 15% na velocidade de processamento, impulsionada pela implantação otimizada de modelos e desempenho de inferência. O Vertex AI Vision integra-se facilmente aos serviços existentes do Google Cloud, ajudando os desenvolvedores a escalar aplicações de visão computacional com mais rapidez e eficiência.
  • Em março de 2024, a Microsoft expandiu sua colaboração com a OpenAI incorporando modelos avançados baseados em transformadores à plataforma de IA do Azure. Essa integração aprimora significativamente os recursos de processamento de linguagem natural (PLN) para usuários corporativos. As aplicações incluem atendimento automatizado ao cliente, tradução de idiomas, geração de conteúdo e sumarização de documentos. Mais de 100 empresas na ALEMANHA já adotaram esses recursos, aproveitando a infraestrutura do Azure para implementar automação inteligente em escala.
  • Em abril de 2024, a xAI de Elon Musk lançou uma versão aprimorada de sua plataforma Grok, integrando DNNs mais avançadas para fornecer raciocínio analítico e interpretação de dados aprimorados. O sistema Grok atualizado foi projetado para aplicações corporativas em áreas como modelagem preditiva, inteligência de negócios e previsão estratégica. Com foco em insights em tempo real e melhor desempenho, o Grok agora serve como uma ferramenta poderosa para tomada de decisões orientada por dados e implantação de IA em nível empresarial.
  • Em junho de 2024, a Intel lançou o acelerador de IA Gaudi 3, projetado para fornecer treinamento DNN com alta produtividade e eficiência energética. Comparado ao seu antecessor, o Gaudi 3 reduz o consumo de energia em 25%, ao mesmo tempo em que melhora a largura de banda da memória e o desempenho computacional. O chip se posiciona como uma solução econômica para treinamento e inferência de IA em ambientes de data center de grande porte. A adoção já começou entre os principais provedores de infraestrutura de dados em toda a Europa.

SKU-

Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo

  • Painel interativo de análise de dados
  • Painel de análise da empresa para oportunidades de elevado potencial de crescimento
  • Acesso de analista de pesquisa para personalização e customização. consultas
  • Análise da concorrência com painel interativo
  • Últimas notícias, atualizações e atualizações Análise de tendências
  • Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Pedido de demonstração

Metodologia de Investigação

A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados ​​e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.

A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis ​​de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.

Personalização disponível

A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

Perguntas frequentes

O mercado é segmentado com base em Segmentação do mercado de redes neurais de aprendizado profundo (DNNs) na Europa por tipo de produto (plataformas de software, aceleradores de hardware, serviços), tecnologia (CNNs, RNNs, GANs, transformadores, outros), aplicação (diagnóstico de saúde, veículos autônomos, serviços financeiros, varejo, manufatura, outros), implantação (baseada em nuvem, no local), usuário final (empresas, provedores de saúde, fabricantes automotivos, instituições financeiras, agências governamentais, outros) – Tendências do setor e previsão até 2032 .
O tamanho do Relatório de Análise de Tamanho, Participação e Tendências do Mercado foi avaliado em USD 11.50 USD Billion no ano de 2024.
O Relatório de Análise de Tamanho, Participação e Tendências do Mercado está projetado para crescer a um CAGR de 16.1% durante o período de previsão de 2025 a 2032.
Os principais players do mercado incluem ALYUDA analysisLLC, ALPHABET INC., IBM, Neural Technologies restricted, NEURODIMENSIONInc., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm TechnologiesInc., Intel Corporation, Amazon internet ServicesInc., Microsoft, GMDH LLC., Sensory INC., Ward Systems clusterInc., Xilinx Inc., Starmind .
Testimonial