북미 딥러닝 신경망(DNN) 시장, 구성요소(하드웨어, 소프트웨어 및 서비스), 애플리케이션(이미지 인식, 자연어 처리, 음성 인식, 데이터 마이닝), 최종 사용자(은행, 금융 서비스 및 보험(BFSI), IT 및 통신, 의료, 소매, 자동차, 제조, 항공 우주 및 방위, 보안 및 기타), 국가(미국, 캐나다, 멕시코) - 산업 동향 및 2028년까지의 예측.
딥러닝 신경망(DNN) 시장의 시장 분석 및 통찰력
딥 러닝 신경망(DNN) 시장은 2028년까지 19억 달러 규모로 20.5%의 성장률을 기록할 것으로 예상됩니다. Data Bridge Market Research는 딥 러닝 신경망(DNN) 시장 성장을 촉진하는 요인을 분석합니다.
딥 러닝 신경망(DNN)은 잘 정의된 계산 아키텍처에서 진단, 해결, 예측 및 의사 결정을 위해 널리 배포되는 머신 러닝 기반 기술을 말합니다. 이러한 기술은 음성 인식, 컴퓨터 보안, 이미지 및 비디오 인식, 의료 진단, 산업 결함 감지 및 금융과 같은 다양한 응용 분야에서 채택됩니다.
이 지역 전체에서 인공 지능 (AI) 의 인기 상승은 딥 러닝 신경망(DNN) 시장 성장을 견인하는 주요 요인 중 하나로 작용합니다. 신경망의 향상된 처리 능력, 학습 능력 및 속도 덕분에 이 기술을 많이 채택하고 다양한 조직에서 사용자로부터 데이터를 수집하는 것이 늘어나면서 시장 성장이 가속화됩니다. 특히 소비자와 최종 사용자 산업에서 AI를 비롯한 새로운 구성 요소를 빠르게 채택하면서 삶을 더 편리하게 만들고 정보에 입각한 건전한 결정을 내리는 데 도움이 되고, 변수 간의 복잡한 비선형 관계를 탐지하고 빅데이터의 패턴을 인식하려는 수요가 급증하면서 시장에 더 큰 영향을 미칩니다. 또한 투자 급증, 빠른 디지털화, 인공 지능의 성장과 개발, 그리고 낮은 감독으로 대량의 데이터 세트를 훈련하려는 높은 수요는 딥 러닝 신경망(DNN) 시장에 긍정적인 영향을 미칩니다. 나아가 기존 제품의 혁신은 2021년에서 2028년 사이의 예측 기간 동안 시장 참여자에게 수익성 있는 기회를 제공합니다.
반면, 알고리즘을 구현하고 하드웨어를 통합하는 동안의 복잡성과 구성 요소에 대한 인식 부족은 시장 성장을 방해할 것으로 예상됩니다. 숙련된 전문가의 부족은 2021-2028년 예측 기간 동안 딥 러닝 신경망(DNN) 시장에 도전할 것으로 예상됩니다.
This deep learning neural networks (DNNs) market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on deep learning neural networks (DNNs) market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
North America Deep Learning Neural Networks (DNNs) Market Scope and Market Size
The deep learning neural networks (DNNs) market is segmented on the basis of component, application and end-user. The growth among segments helps you analyze niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
- On the basis of component, the deep learning neural networks (DNNs) market is segmented into hardware, software and services.
- On the basis of application, the deep learning neural networks (DNNs) market is segmented into image recognition, speech recognition, natural language processing, and data mining.
- On the basis of end-user, the deep learning neural networks (DNNs) market is segmented into banking, financial services and insurance (BFSI), it and telecommunication, healthcare, retail, automotive, manufacturing, aerospace and defence, security and others.
Deep Learning Neural Networks (DNNs) Market Country Level Analysis
The deep learning neural networks (DNNs) market is analyzed and market size insights and trends are provided by country, component, application and end-user as referenced above.
The countries covered in the deep learning neural networks (DNNs) market report are U.S., Canada, and Mexico.
The country section of the deep learning neural networks (DNNs) market report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as consumption volumes, production sites and volumes, import export analysis, price trend analysis, cost of raw materials, down-stream and upstream value chain analysis are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Competitive Landscape and Deep Learning Neural Networks (DNNs) Market Share Analysis
딥 러닝 신경망(DNN) 시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 제공된 위의 데이터 포인트는 딥 러닝 신경망(DNN) 시장과 관련된 회사의 초점에만 관련이 있습니다.
딥 러닝 신경망(DNN) 시장 보고서에서 다루는 주요 기업으로는 ALYUDA RESEARCH, LLC, ALPHABET INC., IBM, Micron Technologies, Inc., Neural Technologies Limited, NEURODIMENSION, INC., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm Technologies, Inc., Intel Corporation, Amazon Web Services, Inc., Microsoft, GMDH LLC., Sensory Inc., Ward Systems Group, Inc., Xilinx Inc., Starmind 등이 있습니다. DBMR 분석가는 경쟁 우위를 이해하고 각 경쟁자에 대한 경쟁 분석을 별도로 제공합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.