North America Artificial Intelligence Ai In Drug Discovery Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 1.07 Billion |
시장 규모(예측 연도) |
USD 9.88 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
>북미 약물 발견 시장에서의 인공지능(AI) - 응용 분야별(신약 후보, 약물 최적화 및 재활용, 전임상 시험 및 승인, 약물 모니터링, 새로운 질병 관련 표적 및 경로 찾기, 질병 메커니즘 이해, 정보 수집 및 종합, 가설 형성 및 검증, 신규 약물 설계, 기존 약물의 약물 표적 찾기 등), 기술(머신 러닝, 딥 러닝, 자연어 처리 등), 약물 유형(소분자 및 대분자), 제공(소프트웨어 및 서비스), 적응증(면역 종양학, 신경 퇴행성 질환, 심혈관 질환, 대사 질환 등), 최종 사용(계약 연구 기관(CRO), 제약 및 생명 공학 회사, 연구 센터 및 학술 기관 등) - 산업 동향 및 2031년까지의 예측.
북미 약물 발견 시장 분석 및 규모에서의 인공지능(AI)
약물 발견 시장에서 인공지능(AI)은 데이터 분석, 예측 모델링, 가상 스크리닝을 통해 프로세스를 혁신하면서 놀라운 발전을 이루었습니다. 그 이점에는 약물 개발 가속화, 비용 절감, 표적 식별의 정확도 향상이 포함됩니다. AI는 리드 화합물을 최적화하고, 임상 시험을 간소화하며 , 개인화된 의학을 향상시켜 다양한 질병에 대한 새로운 치료법을 약속하는 동시에 위험과 출시 시간을 최소화합니다.
북미 인공지능(AI) 약물 발견 시장 규모는 2023년에 10억 7천만 달러로 평가되었으며, 2031년까지 98억 8천만 달러에 도달할 것으로 예상되며, 2024년에서 2031년까지 예측 기간 동안 CAGR은 54.9%입니다. 이는 시장 가치를 나타냅니다. 시장 가치, 성장률, 세분화, 지리적 범위, 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 심층 전문가 분석, 환자 역학, 파이프라인 분석, 가격 분석 및 규제 프레임워크도 포함됩니다.
보고 범위 및 시장 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2024년부터 2031년까지 |
기준 연도 |
2023 |
역사적 연도 |
2022 (2016-2021년까지 사용자 정의 가능) |
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러 |
다루는 세그먼트 |
Application (Novel Drug Candidates, Drug Optimization and Repurposing Preclinical Testing and Approval, Drug Monitoring, Finding New Diseases Associated Targets and Pathways, Understanding Disease Mechanisms, Aggregating and Synthesizing Information, Formation and Qualification of Hypotheses, De Novo Drug Design, Finding Drug Targets of an Old Drug and Others), Technology (Machine Learning, Deep Learning, Natural Language Processing and Others), Drug Type (Small Molecule and Large Molecule), Offering (Software and Services), Indication (Immuno-Oncology, Neurodegenerative Diseases, Cardiovascular Diseases, Metabolic Diseases and Others), End Use (Contract Research Organizations (CROs), Pharmaceutical and Biotechnology Companies, Research Centers and Academic Institutes and Others) |
Countries Covered |
U.S., Canada and Mexico |
Market Players Covered |
NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.), Aria Pharmaceuticals, Inc. (U.S.), DEEP GENOMICS (Canada), Exscientia (U.K.), Insilico Medicine (Hong Kong), Cyclica (Canada), NuMedii, Inc. (U.S.), Envisagenics (U.S.), Owkin Inc. (U.S.), BERG LLC (U.S.), Schrödinger, Inc. (U.S.), XtalPi Inc. (China), and BIOAGE Inc. (U.S.) |
Market Opportunities |
|
Market Definition
Artificial intelligence (AI) in drug discovery employs algorithms and machine learning to expedite the identification and development of potential pharmaceutical compounds. By analyzing vast datasets, AI models predict molecular interactions, optimize drug designs, and forecast biological activity, significantly accelerating the discovery process. AI-driven approaches enhance efficiency, precision, and innovation in drug development, offering promising solutions to complex healthcare challenges.
Artificial Intelligence (AI) in Drug Discovery Market Dynamics
Drivers
- Accelerated Drug Discovery Process
AI expedites the drug discovery process by analyzing vast datasets, predicting molecular interactions, and identifying potential drug candidates more rapidly than traditional methods. For instance, Atomwise, using AI-powered virtual screening, identified a drug candidate for Ebola in just a few days, a process that typically takes months using traditional methods. This acceleration allows for quicker identification and development of promising compounds, potentially saving lives in urgent medical situations.
- Rise in Incidence of Chronic Diseases Propels Need
The surge in chronic diseases worldwide, exemplified by CDC data showing six in 10 U.S. adults affected, underscores the urgency for effective treatments. AI in drug discovery emerges as a promising solution to mitigate this health crisis. Through analyzing vast datasets, AI platforms offer insights into developing drugs targeting conditions such as heart disease and diabetes, addressing the pressing need for innovative therapies to reduce mortality rates.
Opportunities
- Rising Collaboration and Data Sharing among Researchers
AI fosters collaboration among researchers and facilitates data sharing across institutions and companies, enabling access to diverse datasets and enhancing the collective knowledge base for drug discovery. For instance, platforms such as OpenAI's Drug Discovery, which harness AI to analyze molecular structures and predict drug properties, encourage collaborative efforts by providing a shared space for researchers to access and contribute to a vast pool of data, accelerating the pace of discovery and innovation in the pharmaceutical industry.
- Growing Demand for Personalized Medicine
AI facilitates personalized medicine by analyzing patient data, including genomics, proteomics, and clinical records, to identify biomarkers indicative of disease susceptibility and treatment response. For instance, AI-driven analysis of tumor genomic profiles can predict patient responses to specific cancer therapies, enabling tailored treatment strategies that maximize efficacy and minimize adverse effects, ultimately improving patient outcomes in oncology and beyond.
Restraints/Challenges
- Integration with Traditional Methods Hinder Workflow
Integrating AI with traditional drug discovery methods faces hurdles in standardization, compatibility, and workflow optimization. Harmonizing AI algorithms with established experimental and computational techniques necessitates meticulous planning to ensure seamless integration, minimizing disruptions to existing workflows.
- Data Privacy and Accessibility Limit Development
Access to proprietary data in drug discovery is restricted due to privacy, intellectual property, and regulatory constraints. This limits the availability of data for AI models, hindering their development and validation. Privacy concerns, especially regarding patient data, necessitate careful handling and compliance with regulations, further complicating data accessibility for AI-driven drug discovery initiatives.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Recent Developments
- In July 2021, Chief.AI introduced a pay-as-you-go AI platform for drug discovery, democratizing access to advanced AI technologies. This empowers small and medium enterprises to pinpoint breakthrough therapeutics swiftly and precisely, addressing the unpredictability of traditional drug discovery
- In January 2021, Nucleai and Debiopharm Pharma formed a collaborative agreement, permitting the latter to utilize Nucleai's AI platform for oncology drug candidates. This underscores AI's growing significance in refining drug development processes, particularly in biomarker-based therapies
- In September 2020 witnessed Atomwise securing USD 123 million in Series B financing, led by Sanabil and B Capital Group Investments. This substantial investment aims to expand Atomwise's market presence, initiate its drug discovery pipeline, and forge new partnerships with pharmaceutical firms, emphasizing AI's pivotal role in advancing artificial intelligence in drug discovery and development
- In July 2020, IBM strategically acquired WDG Automation, enriching its AI-infused automation capabilities for enterprises. This strategic move enhances IBM's capacity to deliver comprehensive AI solutions, spanning from business processes to IT operations, thereby fortifying its overall portfolio
Artificial Intelligence (AI) in Drug Discovery Market Scope
The market is segmented on the basis of application, technology, drug type, offering, indication, and end use. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Application
- Novel Drug Candidates
- Drug Optimization and Repurposing Preclinical Testing and Approval
- Drug Monitoring
- Finding New Diseases Associated Targets and Pathways
- Understanding Disease Mechanisms
- Aggregating and Synthesizing Information
- Formation and Qualification of Hypotheses
- De Novo Drug Design
- Finding Drug Targets of an Old Drug
- Others
Technology
- Machine Learning
- Deep Learning
- Natural Language Processing
- Others
Drug Type
- Small Molecule
- Large Molecule
Offering
- Software
- Services
Indication
- Immuno-Oncology
- Neurodegenerative Diseases
- Cardiovascular Diseases
- Metabolic Diseases
- Others
End Use
- 계약 연구 기관(CRO)
- 제약 및 생명공학 회사
- 연구 센터 및 학술 기관
- 기타
북미 약물 발견 시장에서의 인공지능(AI) 지역 분석/통찰력
위에 언급된 대로 국가, 응용 분야, 기술, 약물 유형, 제공 내용, 적응증 및 최종 용도별로 시장을 분석하고 시장 규모에 대한 통찰력과 추세를 제공합니다.
시장 보고서에서 다루는 국가는 북미의 미국, 캐나다, 멕시코입니다.
미국은 주요 시장 참여자와 높은 GDP를 가진 최대 소비자 시장이라는 지위에 힘입어 약물 발견 시장에서 인공지능을 지배하고 있습니다. 이 나라의 성장은 약물 발견 애플리케이션에 맞춰진 AI 기술의 발전에 의해 촉진됩니다.
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향이 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
의료 인프라 성장 설치 기반 및 신기술 침투
이 시장은 또한 자본 장비에 대한 의료 지출의 모든 국가별 성장, 시장에 대한 다양한 종류의 제품의 설치 기반, 수명선 곡선을 사용한 기술의 영향, 의료 규제 시나리오의 변화 및 시장에 미치는 영향에 대한 자세한 시장 분석을 제공합니다. 이 데이터는 2016-2021년의 과거 기간에 대해 제공됩니다.
경쟁 환경 및 약물 발견 시장 점유율 분석에서의 인공지능(AI)
시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 시장과 관련된 회사의 초점에만 관련이 있습니다.
시장에서 활동하는 주요 기업은 다음과 같습니다.
- 엔비디아 코퍼레이션(미국)
- IBM Corp. (미국)
- Atomwise Inc. (미국)
- 마이크로소프트(미국)
- Benevolent AI(영국)
- Aria Pharmaceuticals, Inc. (미국)
- DEEP GENOMICS(캐나다)
- 엑스사이언티아(영국)
- 인실리코 메디신(홍콩)
- Cyclica(캐나다)
- NuMedii, Inc. (미국)
- 엔비사제닉스(미국)
- 오우킨 주식회사(미국)
- BERG LLC(미국)
- 슈뢰딩거 주식회사(미국)
- XtalPi Inc. (중국)
- BIOAGE Inc. (미국)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.