Global Machine Learning Ml Intelligent Process Automation Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2023 –2030 |
시장 규모(기준 연도) |
USD 13.60 Billion |
시장 규모(예측 연도) |
USD 41.03 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
>글로벌 머신 러닝(ML) 지능형 프로세스 자동화 시장, 구성요소(솔루션, 서비스), 유형(구조화, 비구조화), 기술( 자연어 처리 , 머신 및 딥 러닝, 신경망, 가상 에이전트, 미니 봇, 컴퓨터 비전, 기타), 조직 규모(대기업, 중소기업), 애플리케이션(IT 운영, 콜센터 관리, 비즈니스 프로세스 자동화, 애플리케이션 관리, 콘텐츠 관리, 보안 관리, 기타), 비즈니스 기능(정보 기술, 재무 및 회계, 인적 자원, 운영 및 공급망), 배포 모드(온프레미스, 클라우드), 최종 사용자(은행, 금융 서비스, 보험(BFSI), 통신 및 IT, 운송 및 물류, 미디어 및 엔터테인먼트, 소매 및 전자 상거래, 제조, 의료 및 생명 과학, 기타) - 산업 동향 및 2030년까지의 예측.
머신러닝(ML) 지능형 프로세스 자동화 시장 분석 및 규모
다양한 산업 분야에서 비즈니스 생산성을 높이고 기술 도입을 확대해야 할 필요성이 커지면서 머신 러닝(ML) 지능형 프로세스 자동화 시장이 성장할 것으로 예상됩니다. 지능형 프로세스 자동화 솔루션은 사용자에게 최첨단 도구와 적응형 워크플로를 제공하여 더 빠르고 더 많은 지식을 바탕으로 의사 결정을 내릴 수 있도록 합니다. 이러한 솔루션은 인터페이스를 관리하고 워크플로 시스템의 병목 현상을 제거합니다. 이러한 요인이 향후 몇 년 동안 시장에 모멘텀을 제공할 것으로 예상됩니다.
Data Bridge Market Research는 2022년에 136억 달러 규모였던 머신 러닝(ML) 지능형 프로세스 자동화 시장이 2030년까지 410억 3천만 달러 규모로 성장하여 2023년부터 2030년까지의 예측 기간 동안 14.80%의 CAGR로 성장할 것으로 분석했습니다. Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 페슬 분석이 포함되어 있습니다.
머신 러닝(ML) 지능형 프로세스 자동화 시장 범위 및 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2023년부터 2030년까지 |
기준 연도 |
2022 |
역사적 연도 |
2021 (2015-2020까지 사용자 정의 가능) |
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러 |
다루는 세그먼트 |
Component (Solutions, Services), Type (Structured, Un Structured), Technology (Natural Language Processing, Machine and Deep Learning, Neural Networks, Virtual Agents, Mini Bots, Computer Vision, Others), Organization Size (Large Enterprises, SMEs), Application (IT Operations, Contact Centre Management, Business Process Automation, Application Management, Content Management, Security Management, Others), Business Function (Information Technology, Finance and Accounts, Human Resources, Operations, and Supply Chain), Deployment Mode (On-Premises, Cloud), End User (Banking, Financial Services, Insurance (BFSI), Telecommunications and IT, Transport and Logistics, Media and Entertainment, Retail and E-Commerce, Manufacturing, Healthcare, and Life Sciences, Others) |
Countries Covered |
U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America. |
Market Players Covered |
Automation Anywhere, Inc. (U.S.), UiPath (U.S.), Blue Prism Limited (U.K.), Pegasystems Inc. (U.S.), AntWorks (Singapore), NICE (Israel), Kofax Inc. (U.S.), SAP SE (Germany), AutomationEdge (U.S.), Larc AI (Pty) Ltd. (South Africa), Autologyx (U.K.), Sanbot Innovation Technology., Ltd (China), Cinnamon Inc. (Japan), Wipro (India), Xerox Corporation (U.S.), TATA Consultancy Services Limited. (India), IBM (U.S.), Atos SE (France), Capgemini (France), Accenture (Ireland) |
Market Opportunities |
|
Market Definition
Software applications are now able to make predictions more accurately through ML, a subfield of AI. Machine learning algorithms forecast new output values using historical data as input. Artificial intelligence (AI) technologies are used in cognitive process automation to speed up cognitive processes such as reasoning, machine learning, and natural language processing. Insight to cognitive process automation, these tasks will be finished more quickly and easily by both humans and machines.
Machine Learning (ML) Intelligent Process Automation Market Dynamics
Drivers
- Growing adoption of RPA drives the market
Businesses use RPA technology to automate manual data entry tasks, doing away with the need for human labor. The IPA workflow combines cognitive learning, RPA, ML, and AI. As a result, as RPA gains popularity, IPA demand increases as well. RPA offers effectiveness and quickness. Artificial intelligence (AI) is added to automation to analyze data in a way that a human could not, recognize patterns in data, and learn from previous decisions to make increasingly wise decisions. IPA reduces the time needed for tasks by doing away with the need for human data entry, information validation, and document sorting thus driving the market growth.
- Increase in demand for implementation and training services drives the market
A significant segment that shows growth is design and implementation. Therefore, the growth is attributed to a better understanding of the use of automation solutions to reduce manual labor. As intelligent process automation solutions are more widely used, there is an increase in demand for implementation and training services. The providers focus on providing a customized solution that satisfies business requirements. As a result, it is anticipated that demand for intelligent process automation services will rise over the forecast period.
- High acceptance ratio drives the market
Machine learning (ML) intelligence sees a rapid expansion of the scope and use of IT and automation globally with a high acceptance rate, minimizing human work and error with optimal resource utilization to earn greater business enterprise efficiency. Automation with artificial intelligence helps in better customer experience and faster decision-making across the organization, which drives market growth.
Opportunities
- Growing investment in the intelligent process automation market
Businesses are switching towards work-from-home policies, which has a significant impact on the amount invested in operational process automation. Through increased investment in application areas such as telemedicine, predictive maintenance, and virtual healthcare management, the market is growing. The adoption of IPA solutions has increased across most non-IT verticals, thus the market sees an expansion in the machine learning (ML) intelligent process automation market during the aforementioned projected timeframe.
- Advancement in technology creates a lucrative opportunity to grow
Emerging intelligent automation technologies such as virtual agents and natural language processing, among others, are bringing in opportunities to improve the customer experience, and machine learning solutions are significantly improving efficiency. Systems can automatically learn from experience and get better with machine learning, which eliminates the need for explicit programming, thus advancement in technology can create lucrative opportunities in the market.
Restraints/Challenges
- Lack of highly qualified and sophisticated labor restricts growth
Skilled labor is required to run a newly automated operational model, but it's crucial to find individuals with RPA and AI expertise. Technical proficiency, an understanding of the business procedures of the organization, and the ability to adapt management techniques are all part of machine learning intelligence. Assigning people to ongoing maintenance, support, and troubleshooting is equally important to develop automation, and the absence of such skills can limit growth.
- Increased cybersecurity threats restrain market expansion
Cybersecurity is one of the most significant concerns in the digital age. Malware and ransomware attacks are becoming increasingly organized forms of cybercrime. Every day, businesses receive an increasing number of security notifications. According to CERT-In, more than 6.07 lakh cybersecurity incidents were reported in the first half of 2021. As a result, using cybersecurity for IPA is necessary to create an efficient security architecture that shields the organization from rising risks. 77% of businesses intend to increase automation in their security ecosystems in the ensuing years, according to a Cisco survey, which restricts the market.
This machine learning (ML) intelligent process automation market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the machine learning (ML) intelligent process automation market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Recent Developments
- In 2021, Cisco and IBM worked together to coordinate and manage 5G networks.
- In 2021, Google Cloud Marketplace users can now purchase DRYiCE iAutomate, according to HCL Technologies.
- In 2021, the debut of IBM Cloud Pak for Network Automation was announced by IBM.
- In 2021, to continue working together, Atos and du extended the contract for an additional five years. The modernization of applications and the digital transformation will be aided by this collaboration for du.
- In 2020, The Pega Platform has received a new improvement, according to Pegasystems. Pega Process AI now has a new feature to assist businesses in real-time business and customer operations optimization.
Global Machine Learning (ML) Intelligent Process Automation Market Scope
머신 러닝(ML) 지능형 프로세스 자동화 시장은 구성 요소, 유형, 기술, 조직 규모, 애플리케이션, 비즈니스 기능, 배포 모드 및 최종 사용자를 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.
요소
- 솔루션
- 소프트웨어 도구
- 플랫폼
- 서비스
- 전문 서비스
- 자문/컨설팅
- 디자인 및 구현
- 훈련
- 지원 및 유지 관리
- 관리 서비스
유형
- 구조화된
- 비구조화된
기술
- 자연어 처리
- 머신러닝과 딥러닝
- 신경망
- 가상 에이전트
- 미니봇
- 컴퓨터 비전
- 기타
조직 규모
- 대기업
- 중소기업
애플리케이션
- IT 운영
- 컨택센터 관리
- 비즈니스 프로세스 자동화
- 애플리케이션 관리
- 콘텐츠 관리
- 보안 관리
- 기타
여행 및 호스피탈리티
사업 기능
- 정보기술
- 재무 및 회계
- 인적자원
- 운영 및 공급망
배포 모드
- 온프레미스
- 구름
최종 사용자
- 은행, 금융 서비스, 보험(BFSI)
- 통신 및 IT
- 운송 및 물류
- 미디어 및 엔터테인먼트
- 소매 및 전자 상거래
- 조작
- 의료 및 생명 과학
- 기타
- 인적자원관리
- 사고 해결
- 서비스 오케스트레이션
- 교육
- 정부 및 공공 부문
- 유용
머신 러닝(ML) 지능형 프로세스 자동화 시장 지역 분석/통찰력
머신 러닝(ML) 지능형 프로세스 자동화 시장을 분석하고, 위에 언급된 구성 요소, 유형, 기술, 조직 규모, 애플리케이션, 비즈니스 기능, 배포 모드 및 최종 사용자별로 시장 규모에 대한 통찰력과 추세를 제공합니다.
머신 러닝(ML) 지능형 프로세스 자동화 시장 보고서에서 다루는 국가는 북미의 미국, 캐나다 및 멕시코, 유럽의 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽 국가, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 남아프리카 공화국, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 남아메리카의 일부인 기타 남아메리카입니다.
북미는 시장을 지배하고 있으며 예측 기간 동안 지배적인 추세를 계속 이어갈 것입니다. 이 지역의 지배력에 기인하는 주요 요인은 다음과 같습니다. 이 지역의 다양한 시장 참여자가 널리 퍼져 있는 것과 함께 프로세스 관리 및 자동화 솔루션이 기업 전체에서 점점 더 널리 채택되고 있습니다. 또한, 지역 성장은 미국에서 프로세스 관리 및 자동화 솔루션에 대한 기업의 채택이 증가함에 따라 촉진되고 있습니다. 세그먼트 성장의 주요 동인은 비즈니스 운영 최적화에 대한 지출 증가와 AI, 머신 러닝, RPA와 같은 최첨단 기술의 광범위한 채택입니다.
아시아 태평양 지역은 클라우드 기반 기술을 도입하고 자동화, 머신 러닝, 인공 지능에 대한 인식이 커지면서 예측 기간 동안 가장 높은 성장률을 기록할 것입니다. 지능형 프로세스 자동화 솔루션 및 서비스에 대한 수요도 자동화, 머신 러닝, 인공 지능에 대한 인식이 커짐에 따라 더욱 증가하고 있습니다. 지역 시장 성장의 주요 동인은 세계화, 경제 개발, 디지털화, 클라우드 기반 기술 도입 증가입니다.
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향이 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
경쟁 환경 및 머신 러닝(ML) 지능형 프로세스 자동화 시장 점유율 분석
머신 러닝(ML) 지능형 프로세스 자동화 시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보에는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 지배력이 있습니다. 제공된 위의 데이터 포인트는 머신 러닝(ML) 지능형 프로세스 자동화 시장과 관련된 회사의 초점에만 관련이 있습니다.
머신 러닝(ML) 지능형 프로세스 자동화 시장에서 활동하는 주요 기업은 다음과 같습니다.
- Automation Anywhere, Inc. (미국)
- UiPath(미국)
- 블루 프리즘 리미티드(영국)
- 페가시스템스 주식회사(미국)
- AntWorks(싱가포르)
- NICE(이스라엘)
- 코팩스 주식회사(미국)
- SAP SE(독일)
- 오토메이션에지(미국)
- Larc AI (Pty) Ltd. (남아프리카공화국)
- 오토로지엑스(영국)
- Sanbot Innovation Technology., Ltd (중국)
- Cinnamon Inc. (일본)
- Wipro(인도)
- 제록스 코퍼레이션(미국)
- TATA Consultancy Services Limited. (인도)
- IBM(미국)
- Atos SE(프랑스)
- 캡제미니(프랑스)
- Accenture(아일랜드)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.