Global Healthcare Generative Ai Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 3.21 Billion |
시장 규모(예측 연도) |
USD 21.59 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
>글로벌 헬스케어 생성 AI 시장, 제공 분야(하드웨어, 소프트웨어 및 서비스), 기술(머신 러닝 및 자연어 처리), 애플리케이션(환자 데이터 및 위험 분석, 의료 영상 및 진단, 정밀 의학, 신약 발견, 라이프스타일 관리 및 원격 환자 모니터링, 가상 비서, 웨어러블, 입원 치료 및 병원 관리, 연구, 응급실 및 수술, 정신 건강, 의료 지원, 로봇 및 사이버 보안), 최종 사용자(병원, 의료비 지급자, 제약 및 생명공학 회사, 환자 및 기타) - 산업 동향 및 2031년까지의 예측.
헬스케어 생성 AI 시장 분석 및 규모
질병 진단에서 의료 산업의 생성 AI 응용 프로그램은 고급 알고리즘을 활용하여 의료 영상 스캔, 유전 정보 및 임상 기록을 포함한 다양한 환자 데이터를 분석합니다. 이러한 AI 시스템은 데이터 내의 복잡한 패턴과 상관 관계를 인식하여 의료 전문가가 다양한 질병과 건강 상태를 정확하게 식별하고 진단하도록 지원합니다. 대량의 데이터를 빠르게 처리할 수 있는 생성 AI는 조기 질병 탐지 및 시기적절한 개입을 용이하게 합니다. 또한 이러한 알고리즘은 새로운 데이터 입력을 통해 지속적으로 학습하고 개선하여 시간이 지남에 따라 진단 정확도를 향상시킵니다. 궁극적으로 질병 진단에 생성 AI를 적용하는 것은 더 빠르고 정확한 진단을 가능하게 하여 환자 결과를 개선하는 것을 목표로 합니다.
글로벌 헬스케어 생성 AI 시장 규모는 2023년에 32억 1,000만 달러로 평가되었으며, 2031년까지 215억 9,000만 달러에 도달할 것으로 예상됩니다. 2024년에서 2031년까지의 예측 기간 동안 CAGR은 26.9%입니다.
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 범위, 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 환자 역학, 파이프라인 분석, 가격 분석 및 규제 프레임워크가 포함되어 있습니다.
보고 범위 및 시장 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2024-2031 |
기준 연도 |
2023 |
역사적 연도 |
2022 (2016-2021년까지 사용자 정의 가능) |
양적 단위 |
매출은 백만 달러, 볼륨은 단위, 가격은 달러로 표시됨 |
다루는 세그먼트 |
제공(하드웨어, 소프트웨어 및 서비스), 기술(머신러닝 및 자연어 처리 ), 애플리케이션(환자 데이터 및 위험 분석, 의료 영상 및 진단, 정밀 의학 , 약물 발견, 라이프스타일 관리 및 원격 환자 모니터링, 가상 비서, 웨어러블, 입원 환자 치료 및 병원 관리, 연구, 응급실 및 수술, 정신 건강, 의료 지원, 로봇 및 사이버 보안), 최종 사용자(병원, 의료비 지불자, 제약 및 생명공학 회사, 환자 및 기타) |
적용 국가 |
미국, 캐나다, 멕시코, 독일, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽 기타 지역, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양 기타 지역, 브라질, 아르헨티나, 남미 기타 지역, 남아프리카, 사우디 아라비아, UAE, 이집트, 이스라엘, 중동 및 아프리카 기타 지역 |
시장 참여자 포함 |
Koninklijke Philips NV(네덜란드), Microsoft(미국), Siemens Healthineers AG(독일), Intel Corporation(미국), NVIDIA Corporation(미국), Google Inc.(미국), GE HealthCare Technologies Inc.(미국), Medtronic(아일랜드), Micron Technology, Inc(미국), Amazon.com Inc(미국), Oracle(미국), Johnson & Johnson Services, Inc.(미국), Merative(미국), General Vision, Inc.(미국), CloudMedx(미국), Oncora Medical(미국), Enlitic(미국), Lunit Inc.(한국), Qure.ai(인도), Tempus(미국), COTA(미국), FDNA INC.(미국), Recursion(미국), Atomwise(미국), Virgin Pulse(미국), Babylon Health(영국), MDLIVE(미국), Stryker(미국), Qventus(미국), Sweetch(이스라엘), Sirona Medical, Inc.(미국), Ginger(미국), Biobeat(이스라엘) |
시장 기회 |
|
시장 정의
헬스케어 생성 AI는 인공 지능(AI) 기술, 특히 생성 모델을 헬스케어 부문에 적용하는 것을 말합니다. 이러한 AI 시스템은 환자별 데이터를 활용하여 실시간 통찰력, 예측 분석 및 개인화된 권장 사항을 생성합니다. 생성 AI는 전자 건강 기록 및 의료 영상 스캔과 같은 다양한 헬스케어 데이터 소스를 분석하여 임상 의사 결정, 질병 진단, 결과 예측 및 치료 선택을 지원하여 궁극적으로 환자 치료 결과를 개선하고 헬스케어 제공 프로세스를 간소화하는 것을 목표로 합니다.
헬스케어 생성 AI 시장 역학
운전자
- 성장하는 임상 의사 결정 지원 시스템
생성적 AI는 의료 분야에서 혁신적인 접근 방식을 제시하며 임상적 의사 결정을 혁신할 것을 약속합니다. 실시간 통찰력, 예측 분석 및 환자별 데이터에서 개인화된 권장 사항을 활용함으로써 의료 서비스 제공자는 생성적 AI를 활용하여 실무를 개선할 수 있습니다. 생성적 AI 알고리즘으로 구동되는 임상적 의사 결정 지원 시스템은 질병 진단, 환자 결과 예측 및 최적의 치료 옵션 식별에 귀중한 지원을 제공합니다. 이러한 시스템은 전자 건강 기록 및 의료 영상 스캔과 같은 다양한 데이터 소스를 분석하여 치료 시점에서 증거 기반 의사 결정을 위한 실행 가능한 통찰력을 생성합니다. 의료 워크플로에 생성적 AI 사용을 통합하면 환자 결과를 크게 개선하고, 치료 제공을 간소화하고, 의료 비용을 절감할 수 있는 잠재력이 있습니다.
- 약물 발견 및 개발
생성적 AI 알고리즘은 약물 발견 및 개발 분야에서 혁신적 잠재력을 보유하고 있습니다. 새로운 약물 후보의 식별을 촉진하고, 분자 구조를 개선하고, 효능 및 안전성 프로필을 예측합니다. 이러한 알고리즘은 게놈 정보, 단백질 구성 및 화학적 속성을 포함하는 광범위한 데이터 세트를 활용하여 새로운 분자 구조를 만들고 생물학적 표적과의 상호 작용을 예상합니다. 제약 회사는 생성적 AI를 활용하여 약물 발견 프로세스를 간소화하고, 신약을 시장에 출시하는 데 따른 시간 및 비용 장벽을 완화할 수 있습니다. 궁극적으로 이러한 접근 방식은 환자에게 보다 정확하고 효과적인 치료법을 제공할 것을 약속합니다.
예를 들어, 2023년 1월, Google은 Bayer AG와 협력하여 약물 전달 노력을 강화하고, 약물 발견에서 생성 AI의 잠재력에 부합했습니다. Bayer는 Google Cloud의 Vertex AI 및 Med-PaLM 2와 같은 솔루션을 활용하여 분자 구조를 최적화하고 효능 및 안전성 프로필을 예측할 수 있는 고급 알고리즘을 활용하여 약물 개발 프로세스를 가속화하는 것을 목표로 합니다. 이 협력은 AI 기반 접근 방식을 활용하여 제약 연구를 혁신하고 환자에게 혁신적인 치료법을 제공하는 추세가 커지고 있음을 강조합니다.
기회
- 인공 지능(AI)과 머신 러닝(ML)의 급속한 진화
인공 지능(AI)과 머신 러닝(ML) 기술의 급속한 발전은 의료 분야 내에서 생성 AI 알고리즘의 역량을 크게 강화했습니다. 생성 AI 의료 회사에서 사용하는 이러한 알고리즘은 의료 이미지, 환자 기록, 게놈 데이터 등 방대한 양의 의료 데이터를 분석하여 귀중한 통찰력, 예측 및 혁신적인 솔루션을 생성할 수 있는 기능을 보유하고 있습니다. AI 및 ML 기술이 지속적으로 발전함에 따라 의료 기관은 생성 AI를 활용하여 환자 결과를 개선하고, 임상 워크플로를 최적화하고, 새로운 치료법과 요법을 개척하고 있습니다.
- 개인화된 의학에 대한 수요 증가
개인화된 의학과 정밀 의료에 대한 관심이 높아지고 있으며, 여기서 치료법은 유전학, 의학적 배경, 라이프스타일과 같은 다양한 요인에 따라 개별 환자에게 맞춤화됩니다. 생성적 AI는 복잡한 생물학적 데이터를 분석하고 맞춤형 치료 전략, 약물 제안 및 예측 모델을 만들 수 있기 때문에 이러한 변화에서 핵심적입니다. 의료 서비스 제공자와 제약 회사가 보다 정확한 치료법을 목표로 하면서 생성적 AI에 대한 수요가 급증할 것으로 예상됩니다. 이 접근 방식은 보다 효과적이고 개별 요구 사항에 맞는 치료법을 제공하여 의료를 혁신할 것을 약속합니다.
제약/도전
- 높은 유지 관리 비용
AI 시스템을 구현하고 유지하려면 인프라, 인력 교육 및 지속적인 업데이트 비용을 포함한 상당한 재정 투자가 필요합니다. 이러한 비용은 많은 의료 기관, 특히 예산이나 리소스가 제한된 기관에 엄청난 부담이 될 수 있습니다. 또한 AI 알고리즘을 관리하고 최적화하기 위한 전문 지식이 필요하기 때문에 운영 비용이 더욱 증가합니다. 결과적으로 생성적 AI 솔루션을 유지하는 데 따른 재정적 부담은 의료 환경에서 널리 채택되고 활용되는 데 장애물로 작용합니다.
- AI 알고리즘의 복잡성 증가
의료 환경에서 AI 시스템을 구현하고 관리하려면 전문적인 전문 지식과 리소스가 필요하지만, 많은 조직에서 이러한 리소스가 부족할 수 있습니다. 생성 AI를 기존 워크플로와 인프라에 통합하는 것은 복잡하고 시간이 많이 걸릴 수 있습니다. AI 알고리즘과 해석의 복잡한 특성은 특히 중요한 의사 결정 시나리오에서 신뢰성과 정확성을 보장하는 데도 어려움을 겪습니다. 의료 데이터와 관행의 역동적이고 진화하는 특성은 AI 모델에 대한 지속적인 업데이트와 개선을 요구하며, 의료 부문 내에서의 배포와 유지 관리에 복잡성을 더합니다.
이 시장 보고서는 최근의 새로운 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 지역 시장 참여자의 영향, 새로운 수익 창출처, 시장 규정의 변화, 전략적 시장 성장 분석, 시장 규모, 범주 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신에 대한 분석 기회를 제공합니다. 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research에 연락하여 분석가 브리핑을 받으세요. 저희 팀은 시장 성장을 달성하기 위한 정보에 입각한 시장 결정을 내리는 데 도움을 드립니다.
최근 개발
- 2023년 10월, Microsoft는 HLTH 2023 컨퍼런스에서 의료 분야를 타겟으로 하는 새로운 데이터 및 AI 솔루션을 출시했습니다. Microsoft Cloud를 통해 Microsoft Fabric 내에서 업계별 데이터 솔루션을 제공하여 의료 기관에 권한을 부여하는 것을 목표로 했습니다. 이러한 솔루션은 분석을 통합하고, 데이터 통합을 간소화하며, 통찰력에 대한 안전한 액세스를 보장하여 궁극적으로 환자와 임상의 경험을 모두 향상할 것을 약속했습니다.
- 2023년 11월, Koninklijke Philips NV는 노르웨이의 Vestre Viken Health Trust와 협력하여 AI Manager 플랫폼을 구축하여 방사선학 워크플로를 혁신했습니다. AI 기반 골절 애플리케이션을 구현하여 진단 프로세스를 간소화하여 방사선과 의사가 복잡한 사례에 더 집중할 수 있게 되었습니다. 이 야심 찬 이니셔티브는 30개 병원에 걸쳐 약 380만 명의 사람들에게 서비스를 제공했으며 유럽에서 Philips의 가장 큰 AI 구축을 기록했습니다. 이 노력은 환자 치료를 개선하고 진단 절차를 상당히 신속하게 진행하는 것을 목표로 했습니다.
헬스케어 생성 AI 시장 범위
시장은 제공, 기술, 애플리케이션 및 최종 사용자를 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.
제공 사항
- 하드웨어
- 프로세서
- 엠피유(MPU)
- 그래픽 카드
- FPGA
- ASIC
- 메모리
- 회로망
- 어댑터
- 스위치
- 상호 연결
- 프로세서
- 소프트웨어
- AI 플랫폼
- 애플리케이션 프로그램 인터페이스(API)
- 머신러닝 프레임워크
- AI 솔루션
- 온 프레미스
- 클라우드 기반
- AI 플랫폼
- 서비스
- 배포 및 통합
- 지원 및 유지 관리
기술
- 머신러닝
- 딥러닝
- 감독됨
- 감독되지 않음
- 강화 학습
- 기타
- 자연어 처리
- 음성 인식
- 문자 인식
- 패턴 및 이미지 인식
- 자동 코딩
- 분류 및 범주화
- 텍스트 분석
- 음성 분석
- 컨텍스트 인식 컴퓨팅
- 장치 컨텍스트
- 사용자 컨텍스트
- 물리적 맥락
- 컴퓨터 비전
애플리케이션
- 환자 데이터 및 위험 분석
- 의료 영상 및 진단
- 정밀의학
- 약물 발견
- 라이프스타일 관리 및 원격 환자 모니터링
- 가상 비서
- 웨어러블
- 입원 환자 치료 및 병원 관리
- 연구
- 응급실 및 수술
- 정신 건강
- 의료 지원 로봇
- 사이버 보안
최종 사용자
- 병원
- 의료비 지불자
- 제약 및 생명공학 회사
- 환자
- 기타
인공 타액 시장 지역 분석/통찰력
위에 언급된 대로 국가, 제공 서비스, 기술, 애플리케이션 및 최종 사용자별로 시장을 분석하고 시장 규모에 대한 통찰력과 추세를 제공합니다.
시장 보고서에서 다루는 국가는 미국, 캐나다, 멕시코, 독일, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽의 기타 국가, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양의 기타 국가, 브라질, 아르헨티나, 남미의 기타 국가, 남아프리카, 사우디 아라비아, UAE, 이집트, 이스라엘, 그리고 중동 및 아프리카의 기타 국가입니다.
북미는 강력한 의료 시설 네트워크를 자랑하고 기술 도입을 위한 강력한 기반을 제공하기 때문에 시장을 지배할 것으로 예상됩니다. 주요 산업 주체는 북미에서 확고히 자리 잡고 있어 경쟁적인 환경에 기여하고 혁신을 주도합니다. 또한 이 지역의 뛰어난 의료 인프라는 고급 솔루션의 통합을 용이하게 합니다. 마지막으로 이 지역의 대규모 인구에서 암이 유행함에 따라 최첨단 의료 기술과 치료에 대한 수요가 더욱 증가하여 북미가 시장에서 우위를 점하게 되었습니다.
아시아 태평양 지역은 정부의 의료 지원 이니셔티브와 국민의 건강 인식 제고로 인해 상당한 성장이 예상되며, 이는 수요를 주도하고 있습니다. 이 지역의 암 인구가 많고 진단 및 치료를 위한 첨단 의료 기술에 대한 수요가 증가함에 따라 이러한 성장 궤적에 더욱 기여하고 있습니다. 또한 양질의 의료 서비스에 대한 수요가 증가함에 따라 이 지역이 의료 부문에서 상당한 확장 가능성을 가지고 있음을 강조합니다.
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향이 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
의료 인프라 성장 설치 기반 및 신기술 침투
이 시장은 또한 자본 장비에 대한 의료 지출의 모든 국가별 성장, 시장에 대한 다양한 종류의 제품의 설치 기반, 수명선 곡선을 사용한 기술의 영향, 의료 규제 시나리오의 변화 및 시장에 미치는 영향에 대한 자세한 시장 분석을 제공합니다. 이 데이터는 2016-2021년의 과거 기간에 대해 제공됩니다.
경쟁 환경 및 헬스케어 생성 AI 시장 분석
시장 경쟁 구도는 경쟁자에 대한 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭 및 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 시장과 관련된 회사의 초점에만 관련이 있습니다.
시장에서 활동하는 주요 기업은 다음과 같습니다.
- Koninklijke Philips NV(네덜란드)
- 마이크로소프트(미국)
- 지멘스 헬스키니어스 AG(독일)
- 인텔 코퍼레이션(미국)
- 엔비디아 코퍼레이션(미국)
- 구글 주식회사(미국)
- GE 헬스케어 테크놀로지스 주식회사(미국)
- 메드트로닉(아일랜드)
- 마이크론 테크놀로지 주식회사(미국)
- Amazon.com Inc(미국)
- 오라클(미국)
- 존슨앤존슨 서비스 주식회사(미국)
- 메라티비(미국)
- 제너럴 비전 주식회사(미국)
- 클라우드메드엑스(미국)
- 온코라 메디컬(미국)
- 엔리틱(미국)
- 루닛 주식회사(한국)
- Qure.ai(인도)
- 템퍼스(미국)
- 코타(미국)
- FDNA 주식회사 (미국)
- 재귀(미국)
- 아톰와이즈(미국)
- 버진 펄스(미국)
- 바빌론 헬스(영국)
- 엠디라이브(미국)
- 스트라이커(미국)
- Qventus(미국)
- 스위트치(이스라엘)
- Sirona Medical, Inc. (미국)
- 생강(미국)
- 바이오비트(이스라엘)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.