Global Generative Ai In Healthcare Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 1.80 Billion |
시장 규모(예측 연도) |
USD 17.20 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
>의료 분야의 글로벌 생성 AI 시장, 응용 분야별(개인화된 치료, 환자 지원, 환자 모니터링 및 예측 분석 , 의료 영상 분석 및 진단, 약물 발견 및 개발), 최종 사용자(병원, 전문 클리닉, 외래 수술 센터 (ASC), 연구 및 학술 기관, 기타) - 산업 동향 및 2031년까지의 예측.
헬스케어 시장 분석 및 규모에서의 생성 AI
시장은 신뢰할 수 있고 혁신적인 데이터를 생성하여 진단을 개선하고, 환자 반응을 복제하고, 테스트 및 훈련 목적으로 합성 데이터 세트를 제공하는 능력 때문에 생성적 AI에 끌렸습니다. 2024년 생명 과학 및 의료 생성적 AI 전망 설문 조사 기사에 보고된 바와 같이, 의료 산업은 생성적 AI의 혁신적 가능성을 노출하는 데 많은 투자를 하고 있으며, 주요 의료 회사의 약 75%가 현재 생성적 AI를 실험하거나 확장할 계획을 세우고 있습니다. 따라서 생성적 AI에 대한 관심이 증가함에 따라 의료 부문에서 새로운 기회가 열리고 있습니다.
Data Bridge Market Research는 2023년에 18억 달러였던 글로벌 헬스케어 생성 AI 시장이 2031년까지 172억 달러에 도달할 것으로 예상되며 예측 기간 동안 32.60%의 CAGR을 경험할 것으로 분석했습니다. 이는 시장 가치를 나타냅니다. "맞춤형 치료"는 헬스케어 산업에서 의료 관행을 혁신하는 혁신적인 영향으로 인해 헬스케어에서 AI에 대한 수요가 급증함에 따라 글로벌 헬스케어 생성 AI 시장의 응용 분야를 지배하고 있습니다. 시장 가치, 성장률, 세분화, 지리적 범위 및 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 심층 전문가 분석, 환자 역학, 파이프라인 분석, 가격 분석 및 규제 프레임워크도 포함됩니다.
보고 범위 및 시장 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2024년부터 2031년까지 |
기준 연도 |
2023 |
역사적 연도 |
2022 (2016-2021년까지 사용자 정의 가능) |
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러 |
다루는 세그먼트 |
응용 프로그램(개인화된 치료, 환자 지원, 환자 모니터링 및 예측 분석, 의료 영상 분석 및 진단, 약물 발견 및 개발), 최종 사용자(병원, 전문 클리닉, 외래 수술 센터(ASC), 연구 및 학술 기관, 기타) |
적용 국가 |
미국, 캐나다, 멕시코, 영국, 독일, 프랑스, 스페인, 이탈리아, 네덜란드, 스위스, 러시아, 벨기에, 터키, 유럽 기타 지역, 중국, 한국, 일본, 인도, 호주, 싱가포르, 말레이시아, 인도네시아, 태국, 필리핀, 아시아 태평양 기타 지역, 남아프리카, 중동 및 아프리카 기타 지역, 브라질, 남미 기타 지역 |
시장 참여자 포함 |
Epic Systems Corporation(미국), DiagnaMed Holdings Corp.(미국), Syntegra(미국), Merative(미국), Google LLC(미국), Oracle(미국), Microsoft(미국), NVIDIA Corporation(미국), Insilico Medicine(미국), Abridge AI, Inc.(미국), ELEKS(에스토니아), Persistent Systems(인도) |
시장 기회 |
|
시장 정의
의료 분야의 생성적 AI는 새롭고 독창적인 데이터를 생성하는 인공 지능 (AI) 기술을 적용하는 것을 말합니다 . 또한 의료 분야에서 생성적 AI는 합성 의료 이미지 생성, 의료 알고리즘 교육을 위한 가상 환자 데이터 생성, 질병 진행 시뮬레이션, 심지어 약물 발견을 위한 새로운 분자 설계와 같은 작업에 사용됩니다.
헬스케어 시장 역학의 글로벌 생성 AI
운전자
- AI 및 머신 러닝 기술의 발전
인공 지능(AI)과 머신 러닝(ML) 기술의 지속적인 발전으로 생성 AI 알고리즘의 역량이 크게 향상되었습니다. 이러한 발전을 통해 의료 서비스 제공자는 약물 발견, 의료 영상 분석, 개인화된 의학 및 예측 분석과 같은 작업에 생성 AI를 활용할 수 있습니다.
- 개인화된 의료 솔루션에 대한 수요 증가
개별 환자의 요구에 맞춰진 개인화된 의료 솔루션에 대한 수요가 증가하고 있습니다. 생성 AI 알고리즘은 게놈 데이터, 환자 기록, 임상 시험을 포함한 대규모 데이터 세트를 분석하여 개인화된 치료 계획과 치료법을 개발할 수 있습니다. 이러한 개인화된 의료 접근 방식은 더 나은 환자 결과와 의료 제공의 효율성 향상으로 이어질 수 있습니다.
- 약물 발견 및 개발에 대한 증가하는 수요
제약 산업은 긴 개발 일정, 높은 비용, 낮은 성공률을 포함하여 약물 발견 및 개발에서 어려움에 직면합니다. 생성적 AI 기술은 분자 구조를 예측하고, 잠재적인 약물 후보를 식별하고, 약물 설계를 최적화하여 약물 발견 프로세스를 가속화할 수 있는 잠재력을 제공합니다. 그 결과, 제약 회사는 약물 발견 및 개발 프로세스를 간소화하기 위해 생성적 AI 솔루션을 점점 더 많이 채택하고 있습니다.
- 의료 시설에 대한 투자 증가
의료 시설의 상태를 개선하고 전반적인 의료 인프라를 개선하는 데 대한 집중이 급증하는 것은 시장 성장을 촉진하는 또 다른 중요한 요인입니다. 자금 조달 및 새롭고 개선된 기술의 적용과 관련하여 공공 및 민간 플레이어 간의 파트너십과 전략적 협업이 증가함에 따라 수익성 있는 시장 기회가 더욱 창출되고 있습니다.
기회
- 의료 영상 분석 채택 증가
의료 영상은 질병 진단, 치료 계획 및 환자 결과 모니터링에서 중요한 역할을 합니다. 생성 AI 알고리즘은 MRI 스캔, CT 스캔 및 X-레이와 같은 의료 영상 데이터를 분석하여 의료 전문가가 이상을 감지하고, 질병 진행을 예측하고, 진단 정확도를 개선하는 데 도움을 줄 수 있습니다. 의료 영상 분석을 위한 생성 AI의 채택이 증가함에 따라 시장 성장이 촉진되고 방사선과 진단 영상 분야에 혁명이 일어나고 있습니다.
- 헬스케어 운영 효율성 및 비용 절감
생성적 AI 애플리케이션은 의료 운영을 간소화하고, 반복적인 작업을 자동화하고, 의료 시설 전반에 걸쳐 리소스 할당을 최적화할 수 있는 기회를 제공합니다. 예를 들어, 생성적 AI 기반 예측 분석은 환자 입원을 예측하고, 인력 수준을 최적화하고, 재고 관리를 개선하여 운영 비용을 줄이고, 워크플로 효율성을 높이고, 리소스 활용도를 높일 수 있습니다.
제약
- 데이터 프라이버시 및 보안 문제
생성적 AI 알고리즘은 의료 기록, 유전체 정보, 진단 이미지를 포함한 방대한 양의 민감한 환자 데이터에 액세스해야 합니다. 그러나 데이터 프라이버시, 보안 침해, 규정 준수에 대한 우려는 광범위한 채택에 상당한 장벽을 제시합니다. 의료 기관은 미국의 HIPAA 및 유럽 연합의 GDPR과 같은 복잡한 규정을 탐색하여 환자 데이터의 윤리적이고 안전한 사용을 보장해야 하며, 이는 기관 간 데이터 공유 및 협업을 제한할 수 있습니다.
- 상호 운용성 및 표준화 부족
의료 산업은 전자 건강 기록(EHR) 시스템, 의료 기기 및 데이터 형식의 다양한 생태계를 포괄하여 상호 운용성 및 데이터 표준화에 어려움을 겪습니다. 일관되지 않은 데이터 형식과 사일로화된 정보 시스템은 생성적 AI 솔루션을 기존 의료 워크플로에 원활하게 통합하는 데 방해가 됩니다. 표준화된 데이터 형식과 상호 운용 가능한 시스템이 없으면 의료 서비스 제공자는 데이터에 효율적으로 액세스하고 교환하는 데 어려움을 겪을 수 있으며, 이는 생성적 AI 애플리케이션의 확장성과 영향을 제한합니다.
도전 과제
- 윤리 및 규제 고려 사항
의료 분야에서 생성 AI를 배치하면 책임, 투명성, 편견, 공정성과 관련된 복잡한 윤리적 및 규제적 고려 사항이 발생합니다. 의료 서비스 제공자는 알고리즘적 편견, 정보에 입각한 동의, AI 기반 의사 결정의 해석 가능성과 같은 문제에 직면하여 환자의 안전과 신뢰를 보장해야 합니다. 게다가 규제 기관은 의료 분야에서 AI 사용을 규제하기 위해 기존 프레임워크를 적용하는 데 어려움을 겪으며, 이로 인해 책임, 감독 및 규정 준수 요구 사항에 대한 불확실성이 발생합니다.
- 제한된 임상적 검증 및 증거 기반
생성적 AI 알고리즘은 의료 서비스 제공 및 연구에 혁명을 일으킬 수 있는 가능성을 가지고 있지만, 많은 응용 프로그램은 실제 환경에서 효능, 정확성 및 안전성을 입증하는 강력한 임상적 검증 및 증거가 부족합니다. 의료 서비스 제공자와 규제 기관은 광범위한 채택 전에 생성적 AI 솔루션의 신뢰성과 임상적 유용성을 평가하기 위해 엄격한 검증 연구와 임상 시험을 요구합니다. 효과와 신뢰성을 뒷받침하는 충분한 증거가 없다면 생성적 AI 기술은 의료 이해 관계자의 회의론과 임상 실무에 통합하는 데 대한 꺼림칙함에 직면할 수 있습니다.
이 글로벌 헬스케어 분야 생성 AI 시장 보고서는 최근의 새로운 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 지역 시장 참여자의 영향, 새로운 수익 창출처, 시장 규정의 변화, 전략적 시장 성장 분석, 시장 규모, 범주 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신에 대한 분석 기회를 제공합니다. 헬스케어 분야 글로벌 생성 AI 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research에 연락하여 분석가 브리핑을 받으세요. 저희 팀은 시장 성장을 달성하기 위한 정보에 입각한 시장 결정을 내리는 데 도움을 드릴 것입니다.
최근 개발 사항
- 2023년 12월, Merck는 약물 발견을 위한 선구적인 소프트웨어 즉 서비스인 Aiddison을 출시했습니다. 이 플랫폼은 Synthia 역합성 소프트웨어 애플리케이션 프로그래밍 인터페이스(API) 통합을 통해 가상 설계 및 제조 가능성을 통합했습니다. 이 출시는 기존 프로세스에 비해 최대 약 70%의 프로세스 속도를 낼 수 있는 능력으로 약물 개발을 가속화하는 것을 목표로 했습니다.
- 2023년 8월, Cognizant는 Google Cloud와의 협업을 확대하여 생성적 AI를 활용하여 관리 프로세스를 개선하고 비용 최적화와 향상된 사용자 경험을 목표로 합니다. 이 협력적 파트너십은 의료 솔루션을 강화하고, 비즈니스 효율성을 개선하고, 사용자 경험을 향상시키는 것을 목표로 합니다.
헬스케어 시장 범위의 글로벌 생성 AI
헬스케어 시장에서 글로벌 생성 AI는 애플리케이션과 최종 사용자를 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.
애플리케이션
- 개인화된 치료
- 환자 지원
- 환자 모니터링 및 예측 분석
- 의료 영상 분석 및 진단
- 약물 발견 및 개발
최종 사용자
- 병원
- 전문 클리닉
- 외래 수술 센터(ASC)
- 연구 및 학술 기관
- 기타
헬스케어 시장의 글로벌 생성 AI 지역 분석/통찰력
위에 언급된 대로, 글로벌 헬스케어 분야의 생성 AI 시장을 분석하고 국가, 애플리케이션, 최종 사용자별로 시장 규모에 대한 통찰력과 추세를 제공합니다.
글로벌 헬스케어 분야 생성 AI 시장 보고서에서 다루는 국가는 미국, 캐나다, 멕시코, 영국, 독일, 프랑스, 스페인, 이탈리아, 네덜란드, 스위스, 러시아, 벨기에, 터키, 유럽 기타 지역, 중국, 일본, 인도, 호주, 한국, 싱가포르, 태국, 말레이시아, 인도네시아, 필리핀, 아시아 태평양 기타 지역, 브라질, 남미 기타 지역, 남아프리카, 중동 및 아프리카 기타 지역입니다.
북미 지역은 의료 분야에서 AI 도입이 증가하고, 주요 시장 참여자가 많으며, 기술 발전이 급속히 진행되어 글로벌 의료 분야 AI 시장을 주도하고 있습니다.
아시아 태평양 지역은 원격 의료 및 의료 지원에 대한 빠른 필요성으로 인해 글로벌 생성형 AI 의료 시장에서 상당한 성장을 관찰할 것으로 예상됩니다. 또한, 통신의 현대화 및 개발은 향후 몇 년 동안 이 지역의 글로벌 생성형 AI 의료 시장 성장을 더욱 촉진할 것으로 예상됩니다.
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향이 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
의료 인프라 성장 설치 기반 및 신기술 침투
의료 분야의 글로벌 생성 AI 시장은 모든 국가의 의료 지출 증가, 자본 장비, 의료 분야의 글로벌 생성 AI 시장에 대한 다양한 종류의 제품 설치 기반, 수명선 곡선을 사용하는 기술의 영향, 의료 규제 시나리오의 변화, 이러한 변화가 의료 분야의 글로벌 생성 AI 시장에 미치는 영향에 대한 자세한 시장 분석을 제공합니다.
경쟁 환경 및 헬스케어 시장 점유율 분석의 글로벌 생성 AI
글로벌 헬스케어 시장에서의 생성적 AI 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 헬스케어 시장에서의 글로벌 생성적 AI와 관련된 회사의 초점에만 관련이 있습니다.
글로벌 헬스케어 분야의 생성 AI 시장에서 활동하는 주요 기업은 다음과 같습니다.
- 에픽 시스템즈 코퍼레이션(미국)
- DiagnaMed Holdings Corp. (미국)
- 신테그라(미국)
- 메라티비(미국)
- 구글 유한회사(미국)
- 오라클(미국)
- 마이크로소프트(미국)
- 엔비디아 코퍼레이션(미국)
- 인실리코 메디신(미국)
- Abridge AI, Inc. (미국)
- ELEKS(에스토니아)
- Persistent Systems(인도)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.