글로벌 데이터 과학 플랫폼 시장 규모, 점유율 및 추세 분석 보고서 – 산업 개요 및 2031년까지의 예측

TOC 요청 TOC 요청 분석가에게 문의 분석가에게 문의 지금 구매 지금 구매 구매하기 전에 문의 구매하기 전에 문의 무료 샘플 보고서 무료 샘플 보고서

글로벌 데이터 과학 플랫폼 시장 규모, 점유율 및 추세 분석 보고서 – 산업 개요 및 2031년까지의 예측

  • ICT
  • Upcoming Report
  • Oct 2024
  • Global
  • 350 Pages
  • 테이블 수: 220
  • 그림 수: 60

Global Data Science Platform Market

시장 규모 (USD 10억)

연평균 성장률 :  % Diagram

Diagram 예측 기간
2024 –2031
Diagram 시장 규모(기준 연도)
USD 158.59 Billion
Diagram 시장 규모(예측 연도)
USD 1,216.19 Billion
Diagram 연평균 성장률
%
Diagram 주요 시장 플레이어
  • List provided in description

>글로벌 데이터 과학 플랫폼 시장 세분화, 구성 요소 유형(플랫폼, 서비스, 지원 및 유지 관리, 컨설팅, 배포 및 통합), 기능 구분(마케팅, 영업, 물류, 재무 및 회계, 고객 지원, 비즈니스 운영 및 기타), 배포 모델(온프레미스 및 클라우드 기반), 조직 규모(중소기업(SME), 대기업), 최종 사용자 애플리케이션(은행, 금융 서비스 및 보험(BFSI), 통신 및 IT, 소매 및 전자 상거래, 의료 및 생명 과학, 제조, 에너지 및 유틸리티, 미디어 및 엔터테인먼트, 운송 및 물류, 정부 및 기타) - 산업 동향 및 2031년까지의 예측

데이터 과학 플랫폼 마켓

데이터 과학 플랫폼 시장 분석

데이터 과학 플랫폼 시장은 인공지능 (AI), 머신 러닝(ML), 클라우드 컴퓨팅 과 같은 첨단 기술의 통합으로 인해 급속한 성장을 경험하고 있습니다 . 시장을 주도하는 최신 방법 중 하나는 AutoML(자동화된 머신 러닝) 도구를 사용하는 것입니다. 이는 모델 생성 프로세스를 간소화하여 전문성이 부족한 기업이 AI를 효과적으로 활용할 수 있도록 합니다. 이러한 플랫폼을 통해 데이터 과학자는 혁신에 집중할 수 있고 자동화는 반복적인 작업을 처리합니다.

Google Cloud AI 및 AWS SageMaker와 같은 클라우드 기반 데이터 과학 플랫폼은 확장성과 비용 효율성을 더욱 촉진합니다. 클라우드를 활용함으로써 기업은 엄청난 컴퓨팅 파워를 주문형으로 사용할 수 있어 방대한 데이터 세트를 빠르게 처리할 수 있습니다.

또 다른 발전은 팀이 프로젝트에서 동시에 작업할 수 있도록 하는 협업 도구의 채택으로, 효율성을 높이고 AI 솔루션의 출시 시간을 단축합니다. 이러한 플랫폼은 종종 기존 데이터 생태계와 통합되어 의료, 금융, 소매와 같은 광범위한 산업에서 사용할 수 있습니다. 조직이 데이터 기반 통찰력의 가치를 깨닫는다면, 포괄적인 데이터 과학 플랫폼에 대한 수요가 크게 증가하여 시장 성장을 촉진할 것으로 예상됩니다.

데이터 과학 플랫폼 시장 규모

글로벌 데이터 과학 플랫폼 시장 규모는 2023년에 1,585.9억 달러로 평가되었으며, 2031년까지 1,216.19억 달러에 도달할 것으로 예상되며, 2024년에서 2031년까지의 예측 기간 동안 CAGR은 29.00%입니다. Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 페슬 분석이 포함되어 있습니다.

데이터 과학 플랫폼 시장 동향

“자동화된 머신 러닝(AutoML)의 부상”

One significant trend driving the growth of the data science platform market is the rise of Automated Machine Learning (AutoML). This technology simplifies and accelerates the model development process, allowing users with limited data science expertise to build predictive models. For instance, in January 2023, Science Applications International Corp. introduced the "Tenjin" data science platform, a versatile solution that supports low-code to full-code development for AI and machine learning applications. Powered by Dataiku, Tenjin facilitates the entire lifecycle of AI and ML model development, from deployment to training and automation, along with advanced data visualization tools. This platform aims to simplify complex processes, making AI accessible to a wider range of businesses.

Report Scope and Data Science Platform Market Segmentation       

Attributes

Data Science Platform Key Market Insights

Segments Covered

  • By Component Type: Platform, Services, Support and Maintenance, Consulting, and Deployment and Integration
  • By Function Division: Marketing, Sales, Logistics, Finance and Accounting, Customer Support, Business Operations, and Others
  • By Deployment Model: On-Premises and Cloud based
  •  Organization Size: Small and Medium-sized Enterprises (SMEs), Large Enterprises
  • By End User Application: Banking, Financial Services, and Insurance (BFSI), Telecom and IT, Retail and E-commerce, Healthcare and Life sciences, Manufacturing, Energy and Utilities, Media and Entertainment, Transportation and Logistics, Government, and Others

Countries Covered

U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America

Key Market Players

IBM (U.S.), DataRobot Inc., (U.S.), apheris AI GmbH (Germany), The Digital Talent Ecosystem (U.S.), Databand (Israel), dotData (U.S.), Explorium Inc., (U.S.), Noogata (Israel), Tecton Inc., (U.S.), Spell Designs Pty Ltd  (U.S.), Arrikto Inc., (U.S.), Iterative (U.S.), Google Inc (U.S.), Microsoft (U.S.), SAS Institute Inc., (U.S.), Amazon Web Services, Inc. (U.S.),  The MathWorks, Inc. (U.S.), Cloudera Inc.,(U.S.), Teradata (U.S.),  TIBCO Software Inc. (U.S.), ALTERYX, INC. (U.S.), RapidMiner (U.S.), Databricks (U.S.), Snowflake Inc., (U.S.), H2O.ai (U.S.), Altair Inc., (U.S.), Anaconda Inc., (U.S.), SAP SE (U.S.), Domino Data Lab Inc., (U.S.) and Dataiku (U.S.)

Market Opportunities

  • Open-Source Innovation
  • Advances in Predictive Analytics

Value Added Data Infosets

In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.

Data Science Platform Market Definition

A data science platform is an integrated environment that provides tools, libraries, and infrastructure for data scientists to develop, manage, and execute data-driven projects. It enables users to collect, analyze, and visualize large datasets while facilitating collaboration between teams. These platforms often support various programming languages (such as Python, R, and SQL), machine learning algorithms, and data pipelines for efficient model building and deployment. Data science platforms also offer capabilities such as version control, automation, and scalability, making it easier for organizations to leverage insights from data in a structured and repeatable way for decision-making.

Data Science Platform Market Dynamics

Drivers

  • Demand for Data-Driven Decision Making

The increasing reliance on data-driven decision-making is a major driver of the data science platform market. Organizations across industries are shifting towards using data insights to enhance strategy, improve customer engagement, and streamline operations. Data science platforms enable businesses to efficiently process and analyze vast datasets, leading to more accurate and informed decisions. For instance, in October 2023, GoodData Corporation unveiled its latest AI-driven data analytics platform, designed to enhance machine learning (ML), AI, and business intelligence (BI) workflows. This platform incorporates various generative AI capabilities, including a virtual assistant that provides summaries and insights. By streamlining data discovery and development processes, it enables users to make informed decisions faster, ultimately improving efficiency and effectiveness in data-driven environments.

  • Growth of Big Data

The exponential rise in data generated from various sources such as IoT devices, social media platforms, and e-commerce activities is a key driver of the data science platform market. These vast volumes of unstructured and structured data require robust platforms for efficient storage, processing, and analysis. For instance, in January 2024, Databricks launched a new business intelligence platform specifically designed for telecom carriers and network service providers (NSPs). This innovative platform empowers these companies by providing a comprehensive view of their networks, operations, and customer interactions. Importantly, it ensures data privacy and protects confidential intellectual property, enabling telecom firms to make informed decisions while maintaining high standards of security in their operations.

Opportunities

  • Open-Source Innovation

Open-source innovation significantly enhances the data science platform market by providing accessible tools that foster collaboration and rapid development. Platforms such as Apache Spark and TensorFlow exemplify this trend, allowing data scientists to leverage robust libraries without hefty licensing fees. As organizations seek cost-effective solutions for machine learning and big data processing, they increasingly adopt these open-source frameworks, leading to a surge in community contributions and enhancements. This collaborative environment not only accelerates the development of new features but also attracts a larger talent pool, creating opportunities for businesses to innovate and maintain competitive advantages in a data-driven landscape.

  • Advances in Predictive Analytics

The surge in predictive analytics across healthcare, finance, and retail sectors presents significant opportunities in the data science platform market. In healthcare, predictive models are used to forecast patient outcomes and optimize treatment plans, as seen with tools such as IBM Watson Health. In finance, companies leverage predictive analytics for credit scoring and fraud detection, exemplified by FICO's advanced scoring algorithms. For instance, in October 2022, IBM Corporation launched the Diamondback tape library, an advanced storage solution utilizing LTO technology. This innovative product boasts an impressive capacity of up to 27 petabytes (PB) of data storage within a single server rack. The Diamondback is designed to meet the increasing demands for data storage, offering scalability and reliability for organizations needing to manage vast amounts of information securely and efficiently. As organizations recognize the value of predictive insights for decision-making, the demand for sophisticated data science platforms capable of handling complex modeling and forecasting continues to grow, creating lucrative market prospects.

Restraints/Challenges

  • Data Privacy and Security Concerns

Data privacy and security concerns significantly hinder the data science platform market. As organizations rely more on data analytics, they face mounting pressure to comply with stringent regulations such as GDPR and CCPA. Non-compliance can result in hefty fines and reputational damage, leading organizations to be cautious in their data handling practices. This trepidation restricts the adoption of advanced data science solutions, as companies may prioritize security over innovation. In addition, the need for robust security measures can increase implementation costs and complexity, further deterring organizations from investing in new data science platforms and slowing overall market growth.

  • Lack of Skilled Professionals

A lack of skilled professionals significantly hinders the data science platform market. The rapid evolution of data science technologies has resulted in a substantial talent gap, with many organizations struggling to find qualified data scientists and analysts. This shortage impedes the effective utilization of advanced data science platforms, leading to underperformance in analytics initiatives. Companies often invest in sophisticated tools but cannot maximize their potential due to insufficient expertise in interpreting data and deriving actionable insights. Consequently, this talent deficit stifles innovation, slows project timelines, and ultimately limits market growth as businesses fail to leverage data science capabilities to their fullest extent.

This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.

Data Science Platform Market Scope

The market is segmented on the basis of component type, function division, deployment model, organization size and end user application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Component Type

  • Platform
  • Services

Professional Services

  • Support and Maintenance
  • Consulting
  • Deployment and Integration

Managed Services

 Function Division

  • Marketing
  • Sales
  • Logistics
  • Finance and Accounting
  • Customer Support
  • Business Operations
  • Others

 Deployment Model

  • On-Premises
  • Cloud based

 Organization Size

  • Small and Medium-sized Enterprises (SMEs)
  • Large Enterprises

 End User Application

  • Banking, Financial Services, and Insurance (BFSI)
  • Telecom and IT
  • Retail and E-commerce
  • Healthcare and Life sciences
  • Manufacturing
  • Energy and Utilities
  • Media and Entertainment
  • Transportation and Logistics
  • Government
  • Others

Data Science Platform Market Regional Analysis

The market is analyzed and market size insights and trends are provided by component type, function division, deployment model, organization size and end user application as referenced above.

시장 보고서에서 다루는 국가는 미국, 캐나다, 북미의 멕시코, 독일, 스웨덴, 폴란드, 덴마크, 이탈리아, 영국, 프랑스, ​​스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽의 기타 유럽 국가, 일본, 중국, 인도, 한국, 뉴질랜드, 베트남, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 브라질, 아르헨티나, 남미의 일부인 기타 남미, UAE, 사우디 아라비아, 오만, 카타르, 쿠웨이트, 남아프리카 공화국, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA)입니다.

북미는 발전하는 국가에서 잘 확립된 인프라와 낮은 노동 비용이 존재하기 때문에 데이터 과학 플랫폼 시장을 지배할 것으로 예상됩니다. 게다가 경제권 내 제조업체가 제공하는 효과적인 애프터 서비스는 예측 기간 동안 확장을 더욱 가속화할 것으로 추산됩니다.

아시아 태평양 지역은 지역 내 석유 및 가스 탐사 작업의 빠른 성장으로 인해 예측 기간 동안 상당한 성장을 보일 것으로 예상됩니다. 중국의 전자 제품 생산을 위한 대규모 기반은 지역 시장 확장에 크게 기여합니다.

보고서의 국가 섹션은 또한 현재 및 미래 시장 추세에 영향을 미치는 개별 시장 영향 요인과 시장 규제의 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 추세 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향은 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.

데이터 과학 플랫폼 시장 점유율

시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 시장과 관련된 회사의 초점에만 관련이 있습니다.

시장에서 운영되는 데이터 과학 플랫폼 시장 리더는 다음과 같습니다.

  • IBM(미국)
  • DataRobot Inc.(미국)
  • apheris AI GmbH(독일)
  • 디지털 인재 생태계(미국)
  • 데이터밴드(이스라엘)
  • dotData(미국)
  • Explorium Inc.(미국)
  • 누가타(이스라엘)
  • 텍톤 주식회사(미국)
  • 스펠 디자인스 주식회사(미국)
  • Arrikto Inc.(미국)
  • 반복적(미국)
  • 구글 주식회사 (미국)
  • 마이크로소프트(미국)
  • SAS Institute Inc.(미국)
  • Amazon Web Services, Inc. (미국)
  • MathWorks, Inc. (미국)
  • 클라우데라 주식회사(미국)
  • 테라데이터(미국)
  • TIBCO 소프트웨어 주식회사(미국)
  • ALTERYX, INC. (미국)
  • RapidMiner(미국),
  • 데이터브릭스(미국)
  • Snowflake Inc.(미국)
  • H2O.ai(미국)
  • 알테어 주식회사(미국)
  • 아나콘다 주식회사(미국)
  • SAP SE(미국)
  • Domino Data Lab Inc.(미국)
  • 다타이쿠(미국)

데이터 과학 플랫폼 시장의 최신 동향

  • 2024년 6월, IBM Corporation은 최첨단 인공지능(AI), 분석 및 데이터 거버넌스 솔루션 도입을 촉진하기 위한 Telefónica Tech와의 전략적 협력을 발표했습니다. 이 파트너십은 기업의 진화하는 요구 사항을 해결하여 점점 더 복잡해지는 비즈니스 환경에서 고급 기술을 활용하여 의사 결정 개선, 운영 효율성 및 향상된 고객 경험을 제공할 수 있도록 합니다.
  • 2024년 3월, Microsoft는 클라우드 AI와 가속 컴퓨팅 기술을 통해 의료 및 생명 과학 혁신을 강화하는 데 중점을 둔 NVIDIA와의 협업을 공개했습니다. 이 파트너십은 정밀 의학 및 AI 기반 진단에 대한 접근성을 가속화하여 환자 치료에 혁명을 일으키는 것을 목표로 합니다. 이 이니셔티브는 환자를 진단하고 치료하기 위한 더 빠르고 정확한 솔루션을 제공하여 궁극적으로 건강 결과를 개선함으로써 의료 산업을 크게 발전시킬 것으로 예상됩니다.
  • 2023년 1월, Science Applications International Corp.는 AI 및 머신 러닝 애플리케이션을 위한 로우코드에서 풀코드까지의 개발을 지원하는 다재다능한 솔루션인 "Tenjin" 데이터 과학 플랫폼을 출시했습니다. Dataiku로 구동되는 Tenjin은 배포에서 교육 및 자동화에 이르기까지 AI 및 ML 모델 개발의 전체 라이프사이클을 용이하게 하며 고급 데이터 시각화 도구도 제공합니다. 이 플랫폼은 복잡한 프로세스를 단순화하여 더 광범위한 비즈니스에서 AI에 접근할 수 있도록 하는 것을 목표로 합니다.
  • 2022년 10월, IBM Corporation은 LTO 기술을 활용한 고급 스토리지 솔루션인 Diamondback 테이프 라이브러리를 출시했습니다. 이 혁신적인 제품은 단일 서버 랙 내에서 최대 27페타바이트(PB)의 인상적인 데이터 스토리지 용량을 자랑합니다. Diamondback은 증가하는 데이터 스토리지 수요를 충족하도록 설계되어 방대한 양의 정보를 안전하고 효율적으로 관리해야 하는 조직에 확장성과 안정성을 제공합니다.
  • 2022년 6월 SAS Institute는 Kamakura Corporation을 인수하여 역량을 확대하고 통합 위험 솔루션으로 포트폴리오를 강화했습니다. 이 인수는 자산 부채 관리(ALM) 및 은행을 포함한 기타 금융 부문에서 전문화된 전문 서비스를 제공하는 데 중점을 둡니다. SAS는 리소스와 전문성을 결합하여 복잡한 위험 관리 과제를 해결하는 포괄적인 솔루션을 제공하여 조직이 정보에 입각한 재무적 결정을 내리고 시장 불확실성을 효과적으로 탐색할 수 있도록 지원합니다.


SKU-

세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요

  • 대화형 데이터 분석 대시보드
  • 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
  • 사용자 정의 및 질의를 위한 리서치 분석가 액세스
  • 대화형 대시보드를 통한 경쟁자 분석
  • 최신 뉴스, 업데이트 및 추세 분석
  • 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
데모 요청

연구 방법론

데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.

DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.

사용자 정의 가능

Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

자주 묻는 질문

The market is segmented based on Segmentation, By Component Type (Platform, Services, Support and Maintenance, Consulting, and Deployment and Integration), Function Division (Marketing, Sales, Logistics, Finance and Accounting, Customer Support, Business Operations, and Others), Deployment Model (On-Premises and Cloud based), Organization Size (Small and Medium-sized Enterprises (SMEs), Large Enterprises), End User Application (Banking, Financial Services, and Insurance (BFSI), Telecom and IT, Retail and E-commerce, Healthcare and Life sciences, Manufacturing, Energy and Utilities, Media and Entertainment, Transportation and Logistics, Government, and Others) – Industry Trends and Forecast to 2031 .
The Global Data Science Platform Market size was valued at USD 158.59 USD Billion in 2023.
The Global Data Science Platform Market is projected to grow at a CAGR of 29% during the forecast period of 2024 to 2031.
The major players operating in the market include , List provided in description ,.
The market report covers data from the U.S., Canada and Mexico in North America, Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe in Europe, China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in the Asia-Pacific (APAC), Saudi Arabia, U.A.E, South Africa, Egypt, Israel, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA), Brazil, Argentina and Rest of South America as part of South America.