Global Data Monetization Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 3.24 Billion |
시장 규모(예측 연도) |
USD 15.84 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
|
>글로벌 데이터 수익화 시장 세분화, 구성 요소(도구 및 서비스), 데이터 유형(고객 데이터, 제품 데이터, 재무 데이터 및 공급업체 데이터), 사업 기능(영업 및 마케팅, 공급망 마케팅, 운영, 재무 및 기타), 배포 유형(온프레미스 및 클라우드), 조직 규모(중소기업 및 대기업), 산업 수직(BFSI, 통신, 소비재 및 소매, IT, 의료, 제조, 미디어 및 엔터테인먼트, 운송 및 물류, 에너지 및 유틸리티 및 기타) - 산업 추세 및 2031년까지의 예측
데이터 수익화 시장 분석
데이터 수익화 시장은 조직이 데이터 자산의 가치를 점점 더 인식함에 따라 빠르게 진화하고 있습니다. 이 시장은 기업이 데이터를 판매하거나, 운영 개선을 위해 활용하거나, 고객 경험을 향상시켜 수익을 창출할 수 있도록 하는 전략과 기술을 포함합니다. 빅데이터 분석, 인공 지능 , 머신 러닝의 등장으로 기업은 이제 방대한 양의 정보에서 귀중한 통찰력을 추출하여 정보에 입각한 의사 결정과 혁신적인 서비스 제공을 추진할 수 있습니다. 최근의 발전에는 보다 강력한 데이터 공유 생태계를 만드는 것을 목표로 하는 기술 회사와 데이터 분석 회사 간의 파트너십이 포함됩니다. 또한 데이터 프라이버시와 보안 규정에 대한 강조가 커지면서 조직은 윤리적인 데이터 수익화 관행을 채택하게 되었습니다. 모든 산업이 데이터 중심 전략을 채택함에 따라 데이터 수익화 시장은 상당한 성장을 목격할 것으로 예상되며, 조직은 각 부문에서 경쟁 우위를 확보하는 동시에 처분할 수 있는 풍부한 정보를 활용하려고 합니다.
데이터 수익화 시장 규모
글로벌 데이터 수익화 시장 규모는 2023년에 32억 4천만 달러로 평가되었으며, 2031년까지 158억 4천만 달러에 도달할 것으로 예상되며, 2024년에서 2031년까지의 예측 기간 동안 CAGR은 21.95%입니다. Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 페슬 분석이 포함되어 있습니다.
데이터 수익화 시장 동향
“정교한 데이터 수익화 솔루션”
데이터 수익화 시장은 조직이 데이터 자산을 활용할 수 있는 혁신적인 방법을 점점 더 모색함에 따라 변혁적인 추세를 목격하고 있습니다. 중요한 추세 중 하나는 구독 기반 모델의 증가로, 회사에서 데이터 액세스를 서비스로 제공하여 고객이 막대한 사전 투자 없이 통찰력을 얻을 수 있도록 합니다. 이 모델은 지속적인 수익 흐름을 촉진하고 기업 간 협업을 장려합니다. 또한 데이터 분석 및 머신 러닝 기술의 발전으로 대규모 데이터 세트에서 실행 가능한 통찰력을 도출하는 능력이 향상되어 보다 정보에 입각한 의사 결정이 가능해지고 있습니다. 산업이 데이터 중심 전략을 채택함에 따라 정교한 데이터 수익화 솔루션에 대한 수요는 계속 증가하여 부문 전반에 걸쳐 혁신적인 파트너십과 향상된 데이터 공유 생태계를 위한 길을 열 것입니다.
보고서 범위 및 데이터 수익화 시장 세분화
속성 |
데이터 수익화 주요 시장 통찰력 |
다루는 세그먼트 |
|
적용 국가 |
미국, 캐나다 및 멕시코(북미), 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 브라질, 아르헨티나 및 남미의 일부인 기타 남미 |
주요 시장 참여자 |
Adastra(캐나다), Dawex Systems(프랑스), Infosys Limited(인도), ComViva(인도), NETSCOUT(미국), DataRobot, Inc.(미국), Optiva Inc.(캐나다), Google(미국), IBM(미국), 101 Data Solutions(영국), Accenture(아일랜드), ALC LTD.(미국), SAP(독일) |
시장 기회 |
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석 및 유봉 분석이 포함되어 있습니다. |
데이터 수익화 시장 정의
Data monetization is the process of deriving economic value from data assets. It involves selling raw data, providing insights through data analysis, or using data to improve products and services. By leveraging their data, organizations can create new revenue streams, enhance operational efficiencies, and improve customer experiences, ultimately driving growth and gaining a competitive edge in the market.
Data Monetization Market Dynamics
Drivers
- Increasing Data Generation
The exponential growth of data generated by businesses and consumers is significantly expanding opportunities for data monetization. As organizations collect vast amounts of data from various sources, including transactions, social media interactions, and IoT devices, they possess a treasure trove of insights waiting to be unlocked. This increasing volume of data presents numerous avenues for monetization, such as selling aggregated datasets to third parties or leveraging analytics to derive actionable insights for enhanced decision-making. As companies seek to capitalize on these data assets, the market for data monetization solutions is expected to grow rapidly, driving innovation and investment in this area.
- Growing Advancements in Data Analytics
Enhanced analytics capabilities, particularly through the integration of artificial intelligence (AI) and machine learning (ML), are revolutionizing how organizations extract value from their data. These advanced technologies allow businesses to analyze vast datasets quickly and accurately, uncovering hidden patterns, trends, and insights that were previously unattainable. As organizations recognize the potential of AI and ML to drive informed decision-making and improve operational efficiency, the demand for data monetization solutions is soaring. This shift enables companies to optimize their existing processes and opens new revenue streams by transforming raw data into valuable insights that can be sold or utilized for strategic initiatives.
Opportunities
- Expansion of Internet of Things (IoT)
The proliferation of Internet of Things (IoT) devices is creating a significant opportunity for businesses to monetize the vast amounts of data generated from these interconnected systems. As IoT devices collect and transmit real-time data across various sectors—such as healthcare, manufacturing, and smart cities—organizations can leverage advanced analytics to extract valuable insights. This data can be used to enhance operational efficiencies, improve customer experiences, and inform strategic decisions. Additionally, companies can offer data-driven solutions and services to other businesses, creating new revenue streams. As the IoT ecosystem continues to expand, the potential for data monetization will grow, driving innovation and investment in analytics capabilities.
- Increased Focus on Data-Driven Marketing
As businesses increasingly focus on targeted marketing strategies, monetizing customer data for insights and segmentation emerges as a crucial growth opportunity. By analyzing customer behavior, preferences, and purchasing patterns, organizations can tailor their marketing efforts to specific demographics, enhancing engagement and conversion rates. This data-driven approach helps in creating personalized experiences for customers and allows companies to optimize their advertising spend by targeting the right audience at the right time. Furthermore, businesses can package and sell these insights to other organizations seeking to refine their marketing strategies, thus generating additional revenue streams and driving overall market growth.
Restraints/Challenges
- Complexity of Data Integration
Organizations frequently encounter challenges when integrating data from disparate sources, which significantly impacts their ability to generate comprehensive insights for effective monetization. The presence of siloed data across different departments or systems can lead to fragmented information that complicates analysis. Without a unified view of their data, businesses may struggle to derive actionable insights, limiting their monetization strategies. Additionally, varying data formats and standards can further complicate integration efforts. As a result, organizations may miss valuable opportunities to capitalize on their data assets, ultimately hindering their growth potential in the competitive data monetization landscape.
- High Implementation Costs
Developing and maintaining robust data analytics and monetization platforms often requires substantial financial investment, which can be a significant barrier for smaller organizations. The costs associated with acquiring advanced technology, hiring skilled personnel, and implementing effective data management strategies can quickly add up. For smaller businesses with limited budgets, these financial constraints may prevent them from investing in the necessary infrastructure to fully leverage their data for monetization. Consequently, they may struggle to compete with larger firms that can allocate more resources towards advanced analytics capabilities, resulting in missed opportunities for growth and market presence in the data monetization sector.
Data Monetization Market Scope
The market is segmented on the basis of component, data type, business function, deployment type, organization size, and industry vertical. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Component
- Tools
- Services
Data Type
- Customer Data
- Product Data
- Financial Data
- Supplier Data
Business Function
- Sales and Marketing
- Supply Chain Management
- Operations
- Finance
- Others
Deployment Type
- On-Premises
- Cloud
Organization Size
- Small and Medium-Sized Enterprises
- Large Enterprises
Industry Vertical
- BFSI
- Telecommunication
- Consumer Goods and Retail
- IT
- Healthcare
- Manufacturing
- Media and Entertainment
- Transportation and Logistics
- Energy and Utilities
- Others
Data Monetization Market Regional Analysis
The market is analyzed and market size insights and trends are provided by component, data type, business function, deployment type, organization size, and industry vertical as referenced above.
The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
North America leads the data monetization market, primarily driven by the widespread adoption of advanced technologies like cloud computing, big data, and analytics. These innovations enable businesses in the region to harness the full potential of their data, facilitating improved decision-making and enhanced revenue generation. As companies increasingly recognize the value of data, North America's technological infrastructure supports its continued dominance in this evolving market.
The Asia-Pacific region is anticipated to experience the highest growth in the data monetization market during the forecast period from 2024 to 2031, fueled by advancements in networking technologies. As these innovations enhance connectivity and data processing capabilities, businesses will be better positioned to leverage their data for monetization. This surge in technological development is expected to drive increased investment and interest in data monetization strategies throughout the region.
The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Data Monetization Market Share
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Data Monetization Market Leaders Operating in the Market Are:
- Adastra (Canada)
- Dawex Systems (France)
- Infosys Limited (India)
- ComViva (India)
- NETSCOUT (U.S.)
- DataRobot, Inc. (U.S.)
- Optiva Inc. (Canada)
- Google (U.S.)
- IBM (U.S.)
- 101 Data Solutions (U.K.)
- Accenture (Ireland)
- ALC LTD. (U.S.)
- SAP (Germany)
Latest Developments in Data Monetization Market
- In February 2024, Gulp Data revealed a partnership with Snowflake aimed at helping organizations explore, share, and maximize the value of their data. This collaboration will offer services such as data valuation, data-backed loans, and data monetization solutions, empowering businesses to harness their data assets more effectively. By combining their expertise, Gulp Data and Snowflake aim to facilitate innovative approaches to data management and monetization for their clients
- In December 2023, Thales finalized its acquisition of Imperva, enhancing its offerings in application, data security, and identity management. This strategic move aims to deliver comprehensive solutions that address a wide range of cybersecurity challenges, which are becoming more frequent, severe, and complex. By leveraging the combined strengths of Thales and Imperva, customers will benefit from improved security measures to protect their critical assets
- In September 2022, SAS announced the launch of SAS Viya on Azure, a robust data analytics platform now available on the Microsoft Azure marketplace. This innovative solution enhances accessibility for businesses seeking to extract insights from their data by integrating the scalability and flexibility of Azure with the advanced capabilities of SAS Viya. As a result, organizations can leverage this powerful combination to drive data-driven decision-making and optimize their operations more efficiently
- In March 2022, Domo, Inc. unveiled Data Apps, a new low-code data tool aimed at democratizing data-driven decision-making across organizations. This innovative platform allows users of all skill levels to easily access and utilize data, breaking down barriers typically associated with traditional business intelligence tools that cater mainly to executives, managers, and data analysts. By making data insights more accessible, Data Apps empowers a broader range of employees to engage in data-driven actions, enhancing overall organizational efficiency and agility
- 2022년 1월, 이전에 TickSmith로 알려진 Revelate Data Monetization Corp.는 획기적인 데이터 판매 플랫폼을 발전시키기 위해 2,000만 달러 규모의 시리즈 A 펀딩 라운드를 발표했습니다. 이 독특한 B2B SaaS 솔루션은 데이터에 대한 전자상거래 쇼핑 경험을 제공하는 데이터 웹 스토어를 특징으로 하며, 기업이 데이터 자산을 효과적으로 준비, 관리, 패키징 및 수익화하는 데 필요한 모든 도구를 제공합니다. Revelate는 이 투자를 통해 제공 서비스를 개선하고 조직이 데이터 기회를 최대한 활용할 수 있도록 지원합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.