Global Artificial Intelligence In Aviation Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2024 –2031 |
시장 규모(기준 연도) |
USD 4.33 Billion |
시장 규모(예측 연도) |
USD 90.38 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
|
>항공 분야의 글로벌 인공 지능 시장, 제공 분야(서비스, 하드웨어 및 소프트웨어), 기술(컴퓨터 비전, 머신 러닝, 상황 인식 컴퓨팅 및 자연어 처리 ), 응용 분야(동적 가격 책정, 가상 비서, 항공 운영, 스마트 유지 관리, 제조, 감시, 교육 및 기타 응용 프로그램) - 산업 동향 및 2031년까지의 예측.
항공 시장 분석 및 규모에 있어서의 인공지능
항공 시장의 인공지능은 항공 산업의 다양한 부문에서 안전 조치를 강화하고, 운영을 최적화하고, 승객 경험을 개선하는 데 활용됩니다. AI는 경로 최적화, 가동 중단 시간을 최소화하기 위한 예측 유지 관리, 효율적인 항해를 위한 항공 교통 관리를 위해 비행 운영에 적용됩니다. 예를 들어, Airbus는 AI 알고리즘을 사용하여 항공기 데이터를 분석하고 잠재적 고장을 예측하여 사전 유지 관리 조치를 가능하게 하여 안전을 강화하고 운영 비용을 절감합니다. AI 항공의 다양성은 플로어 자동화, 고객 서비스 챗봇, 수하물 처리 최적화로 확장되어 산업을 혁신합니다.
항공 분야의 글로벌 인공지능 시장 규모는 2023년에 43억 3천만 달러로 평가되었으며, 2031년까지 903억 8천만 달러에 도달할 것으로 예상되며, 2024년에서 2031년까지의 예측 기간 동안 CAGR은 46.2%가 될 것입니다. Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 범위, 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 지리적으로 표현된 회사별 생산 및 용량, 유통업체 및 파트너의 네트워크 레이아웃, 자세하고 업데이트된 가격 추세 분석, 공급망 및 수요의 적자 분석이 포함됩니다.
보고 범위 및 시장 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2024년부터 2031년까지 |
기준 연도 |
2023 |
역사적 연도 |
2022 (2016-2021년까지 사용자 정의 가능) |
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러 |
다루는 세그먼트 |
제공(서비스, 하드웨어 및 소프트웨어), 기술(컴퓨터 비전, 머신 러닝, 컨텍스트 인식 컴퓨팅 및 자연어 처리), 애플리케이션(동적 가격 책정, 가상 비서, 항공 운영, 스마트 유지 관리, 제조, 감시, 교육 및 기타 애플리케이션) |
적용 국가 |
미국, 캐나다, 멕시코, 독일, 스웨덴, 폴란드, 덴마크, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽의 나머지 유럽, 일본, 중국, 인도, 한국, 뉴질랜드, 베트남, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양의 나머지 지역, 브라질, 아르헨티나, 남미의 일부인 남미의 나머지 지역, UAE, 사우디 아라비아, 오만, 카타르, 쿠웨이트, 남아프리카 공화국, 중동 및 아프리카의 나머지 지역 |
시장 참여자 포함 |
IBM(미국), Microsoft(미국), Amazon Web Services, Inc.(미국), Airbus SAS(미국), Xilinx(미국), NVIDIA Corporation(미국), Intel Corporation(미국), General Electric(미국), Micron Technology, Inc.(미국), Lockheed Martin Corporation(미국), SAMSUNG(한국), Thales(프랑스), MINDTITAN(에스토니아), Mitsubishi Electric Corporation(일본) 등이 있습니다. |
시장 기회 |
|
시장 정의
항공 분야의 인공지능은 항공기 조종, 항공 교통 관리, 데이터 분석과 같이 일반적으로 인간의 지능이 필요한 작업을 수행하기 위해 컴퓨터 시스템을 사용하는 것을 말합니다. AI는 프로세스를 자동화하고, 이상을 감지하고, 방대한 양의 정보에서 통찰력을 제공함으로써 항공 분야의 안전성, 효율성, 의사 결정을 향상시킵니다. 자율 비행, 예측 유지 관리 , 개인화된 승객 경험과 같은 발전을 가능하게 하여 산업을 혁신합니다.
항공 시장 역학에서의 인공지능
운전자
- AI 통합을 통한 강화된 안전 조치
AI 알고리즘은 센서 , 기상 패턴, 과거 비행 데이터 를 포함한 다양한 소스에서 방대한 양의 데이터를 분석하여 잠재적 안전 위험을 예측하고 사전에 위험을 완화합니다. 이러한 시스템은 항공기 시스템, 공역 조건 및 조종사 행동을 실시간으로 모니터링하여 잠재적 위협에 신속하게 대응할 수 있습니다. AI를 활용함으로써 항공사와 항공 당국은 안전 문제가 확대되기 전에 이를 식별하여 사고를 줄이고, 사고 대응을 개선하고, 궁극적으로 승객, 승무원 및 자산에 더 안전한 환경을 제공하여 신뢰를 강화하고 항공 산업에서 AI 기술 도입을 촉진할 수 있습니다.
예를 들어,
- 루프트한자와 같은 주요 독일 항공사는 AI 알고리즘을 사용하여 항공기 구성품 고장을 예측하여 안전을 강화합니다. 이들의 예측 유지 관리 시스템은 센서와 과거 기록의 데이터를 분석하여 사전에 문제를 해결하고 사고를 줄이며 대응을 개선합니다.
- 간소화된 항공 교통 관리 시스템
AI 기술은 공역 사용, 경로 계획 및 교통 흐름 관리를 최적화하여 혼잡과 지연을 줄입니다. AI는 비행 경로 및 공항 운영을 포함한 방대한 양의 데이터를 분석하여 항공 교통 관제사가 보다 효율적이고 유연한 의사 결정을 내릴 수 있도록 합니다. 이를 통해 안전성이 향상되고 연료 소비가 감소하며 환경 영향이 최소화됩니다. 또한 AI 기반 자동화는 이해 관계자 간의 커뮤니케이션과 조정을 간소화하여 전반적인 운영 효율성을 개선합니다. 항공 여행 수요가 계속 증가함에 따라 항공 교통 관리에 AI를 도입하는 것은 증가하는 복잡성을 관리하고 보다 원활한 운영을 보장하며 시장 성장을 촉진하는 데 필수적입니다.
예를 들어,
- NASA's Advanced Air Mobility project represents a development in urban air transportation. The project aims to optimize routes, minimize congestion, and reduce environmental impact by leveraging AI algorithms to analyze flight trajectories and airspace data. This initiative underscores the potential of AI-driven solutions to revolutionize air mobility, ensuring safer and more efficient transportation in increasingly congested urban environments
Opportunities
- Technological Advancement in Barcode Reading
Airlines can optimize routes to avoid hazardous weather conditions, reducing the risk of turbulence, lightning strikes, and other weather-related incidents by integrating these forecasts into flight planning and decision-making processes. This proactive approach enhances flight safety, minimizes disruptions, and improves passenger experience. As airlines prioritize safety and efficiency, the demand for AI-powered weather forecasting solutions continues to grow, driving innovation and investment in the aviation industry.
- Crew Training and Simulation
Use AI-driven simulations and training systems for pilot and crew training. AI can simulate various scenarios, environments, and emergencies to train pilots and crew members effectively, improve decision-making skills, and enhance safety measures. AI enables dynamic scenario generation, providing tailored training experiences for different skill levels and aircraft types. Moreover, continuous data analysis from training sessions empowers personalized feedback and performance evaluation, fostering continuous improvement. Ultimately, AI-driven training solutions contribute to elevated safety standards, ensuring aviation professionals are well-prepared to handle any challenge they may encounter in the skies.
Restraints/Challenges
- Dependency on Reliable Internet Connectivity
AI systems thrive on real-time data processing and communication, they are inherently reliant on uninterrupted internet access. In remote or airspace-constrained regions, where connectivity may be limited or intermittent, the effectiveness of AI applications can be compromised. This dependency introduces vulnerabilities to critical functions such as flight planning, weather monitoring, and communication with ground control. Moreover, in-flight connectivity solutions may not always guarantee the level of reliability required for seamless AI operations. As a result, the aviation industry faces challenges in fully leveraging AI technologies across its operations, hindering widespread adoption and innovation.
- Limited Availability of Skilled AI Professionals
Developing and implementing AI solutions tailored to aviation require specialized expertise in both AI technologies and aviation operations. However, the intersection of these domains remains relatively niche, resulting in a scarcity of qualified professionals. This shortage hampers the timely deployment and optimization of AI applications in aviation, leading to delays, increased costs, and suboptimal performance. Furthermore, competition for AI talent from other industries exacerbates the challenge, making it difficult for aviation companies to attract and retain top-tier AI experts. As a result, the pace of AI adoption in aviation lags behind its potential, impeding innovation and competitiveness.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market, contact data bridge market research for an analyst brief, our team will help you take an informed market decision to achieve market growth.
Impact and Current Market Scenario of Raw Material Shortage and Shipping Delays
Data Bridge Market Research offers a high-level analysis of the market and delivers information by keeping in account the impact and current market environment of raw material shortage and shipping delays. This translates into assessing strategic possibilities, creating effective action plans, and assisting businesses in making important decisions.
Apart from the standard report, we also offer in-depth analysis of the procurement level from forecasted shipping delays, distributor mapping by region, commodity analysis, production analysis, price mapping trends, sourcing, category performance analysis, supply chain risk management solutions, advanced benchmarking, and other services for procurement and strategic support.
Expected Impact of Economic Slowdown on the Pricing and Availability of Products
When economic activity slows, industries begin to suffer. The forecasted effects of the economic downturn on the pricing and accessibility of the products are taken into account in the market insight reports and intelligence services provided by DBMR. With this, our clients can typically keep one step ahead of their competitors, project their sales and revenue, and estimate their profit and loss expenditures.
Recent Developments
- In October 2022, Searidge Technologies created an AI powered software using NVIDIA GPUs. Its digital tower and apron solutions, use vision AI to manage traffic control for the airports and alert users of safety concern in real time. This innovative technology not only improves airport operations but also boosts market growth by increasing the attractiveness of airports as safer, more efficient hubs, consequently driving demand for Searidge's cutting-edge solutions
- In April 2022, Banglore International Airport Limited (BIAL) collaborated with Amazon to establish a Joint Innovation Center (JIC) and accelerated innovation in aviation. This collaboration fosters the development of new technologies and solutions tailored to the aviation industry's needs, enhancing operational efficiency, passenger experience, and safety standards. As a result, it stimulates market growth by driving innovation, attracting investment, and positioning BIAL as a leader in aviation advancement
Artificial Intelligence in Aviation Market Scope
The artificial intelligence in aviation market is segmented into three notable segments which are based on offering, technology, and application. The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Offering
- Services
- Hardware
- Software
Technology
- Computer Vision
- Machine Learning
- Context Awareness Computing
- Natural Language Processing
Application
- Dynamic Pricing
- Virtual Assistants
- Flight Operations
- Smart Maintenance
- Manufacturing
- Surveillance
- Training
- Other Applications
Artificial Intelligence in Aviation Market Regional Analysis/Insights
The market is analyzed and market size insights and trends are provided by offering, technology, and application as referenced above.
The countries covered in the market report are U.S., Canada, Mexic, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherlands, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific, Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, and Rest of Middle East and Africa.
North America dominates the artificial intelligence in aviation market and will continue to flourish its trend of dominance due to the swift industrialization and presence of major key players in this region.
Asia-Pacific is expected to be the fastest-growing region in the artificial intelligence in aviation market due to the growing demand for AI technologies in the aviation sector. A significant presence in the top market player in the region which provides all the services and products in the market to the vast market size
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향이 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
경쟁 환경 항공 시장 점유율 분석의 인공 지능
시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 우세입니다. 위에 제공된 데이터 포인트는 시장과 관련된 회사의 초점에만 관련이 있습니다.
시장에서 활동하는 주요 기업은 다음 과 같습니다.
- IBM(미국)
- 마이크로소프트(미국)
- Amazon Web Services, Inc. (미국)
- 에어버스 SAS(미국)
- 자일링스(미국)
- 엔비디아 코퍼레이션(미국)
- 인텔 코퍼레이션(미국)
- 제너럴 일렉트릭(미국)
- 마이크론 테크놀로지 주식회사(미국)
- 록히드 마틴 코퍼레이션(미국)
- 삼성(한국)
- 탈레스(프랑스)
- MINDTITAN (에스토니아)
- 미쓰비시 전기 주식회사(일본)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.