제조 시장에서의 글로벌 인공지능(AI) 시장, 제공 분야(하드웨어, 소프트웨어 및 서비스), 기술(머신러닝, 자연어 처리, 상황 인식 컴퓨팅 및 컴퓨터 비전), 애플리케이션(예측 유지 관리 및 기계 검사, 자재 이동, 생산 계획, 현장 서비스, 품질 관리, 사이버 보안, 산업용 로봇 및 회수), 산업(자동차, 에너지 및 전력, 제약, 중금속 및 기계 제조, 반도체 및 전자, 식음료 및 기타), 국가(미국, 캐나다, 멕시코, 브라질, 아르헨티나, 남미 기타 지역, 독일, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽 기타 지역, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양 기타 지역, 사우디아라비아, UAE, 남아프리카 공화국, 이집트, 이스라엘, 중동 및 아프리카 기타 지역) 산업 동향 및 2029년까지의 예측
시장 분석 및 통찰력: 제조 시장의 글로벌 인공 지능(AI)
제조업 인공지능(AI) 시장은 2022년부터 2029년까지 예측 기간 동안 17.20%의 성장률을 기록할 것으로 예상되며, 2029년에는 53억 2,510만 달러에 이를 것으로 예상됩니다. Data Bridge Market Research의 제조업 인공지능(AI) 시장 보고서는 예측 기간 동안 만연할 것으로 예상되는 다양한 요인에 대한 분석과 통찰력을 제공하고, 이러한 요인들이 시장 성장에 미치는 영향을 분석합니다. 지능형 비즈니스 프로세스에 AI를 적용하는 사례가 증가함에 따라 제조업 인공지능(AI) 시장 성장도 가속화되고 있습니다.
인공지능(AI)은 컴퓨터 과학 분야에서 가장 발전된 기술 중 하나로 알려져 있습니다. 더 나은 의사 결정, 언어 이해 등 인간의 지능과 유사한 특성을 지닙니다.
예측 기간 동안 제조 시장에서 인공지능(AI) 성장을 촉진할 것으로 예상되는 주요 요인은 방대하고 복잡한 데이터 세트의 증가, 산업용 IoT 및 자동화의 발전입니다. 또한, 컴퓨팅 성능 향상은 제조 시장에서 인공지능(AI) 성장을 더욱 완화할 것으로 예상됩니다. 또한, 벤처 캐피털 투자 증가 또한 제조 시장에서 인공지능(AI) 성장을 더욱 완화할 것으로 예상됩니다. 반면, 제조업체들이 AI 기반 기술을 도입하는 데 소극적인 태도를 보이는 것은 향후 제조 시장에서 인공지능(AI) 성장을 더욱 저해할 것으로 예상됩니다.
또한, COVID-19의 영향을 억제하기 위한 제조 공장의 운영 효율성 향상과 자동화 기술 도입 증가는 향후 몇 년간 제조 시장에서 인공지능(AI) 성장에 대한 잠재적 기회를 더욱 제공할 것입니다. 그러나 숙련된 인력의 부족과 데이터 프라이버시 관련 우려는 가까운 미래에 제조 시장에서 인공지능(AI) 성장에 더욱 큰 걸림돌이 될 수 있습니다.
이 제조업 인공지능(AI) 시장 보고서는 최근 동향, 무역 규제, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 현지 시장 참여자의 영향, 신규 매출 창출 기회 분석, 시장 규제 변화, 전략적 시장 성장 분석, 시장 규모, 카테고리별 시장 성장, 적용 분야별 틈새 시장 및 시장 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장 기술 혁신 등에 대한 자세한 정보를 제공합니다. 제조업 인공지능(AI) 시장에 대한 자세한 정보를 원하시면 Data Bridge Market Research에 문의하여 분석 브리핑을 받아보세요. 저희 팀은 시장 성장을 위한 정보에 기반한 시장 결정을 내릴 수 있도록 도와드리겠습니다.
제조업 분야의 글로벌 인공지능(AI) 시장 범위 및 시장 규모
제조업 인공지능(AI) 시장은 제공 분야, 기술, 응용 분야 및 산업을 기준으로 세분화됩니다. 각 세그먼트의 성장은 틈새 시장의 성장 잠재력과 시장 접근 전략을 분석하고 핵심 응용 분야와 목표 시장의 차이점을 파악하는 데 도움이 됩니다.
- 제공을 기준으로 제조 시장의 인공지능(AI)은 하드웨어 , 소프트웨어, 서비스로 세분화되었습니다.
- 기술을 기반으로 제조 시장의 인공지능(AI)은 머신 러닝, 자연어 처리, 상황 인식 컴퓨팅, 컴퓨터 비전으로 세분화되었습니다.
- 제조 시장에서 인공지능(AI)은 응용 분야 를 기준으로 예측 유지 관리 및 기계 검사, 자재 이동, 생산 계획, 현장 서비스, 품질 관리, 사이버 보안 , 산업용 로봇 및 회수 로 세분화되었습니다 .
- 산업을 기준으로 제조 시장의 인공지능(AI)은 자동차, 에너지 및 전력, 제약, 중금속 및 기계 제조, 반도체 및 전자, 식품 및 음료 및 기타로 세분화되었습니다.
제조업 시장 국가 수준 분석 의 인공지능(AI)
제조업 분야의 인공지능(AI) 시장을 분석하고, 위에 언급된 대로 국가, 제공 서비스, 기술, 응용 프로그램 및 산업별로 시장 규모와 양에 대한 정보를 제공합니다.
제조업 분야의 인공지능(AI) 시장 보고서에서 다루는 국가는 북미의 미국, 캐나다, 멕시코, 남미의 일부인 브라질, 아르헨티나 및 기타 남미, 독일, 이탈리아, 영국, 프랑스, 스페인, 네덜란드, 벨기에, 스위스, 터키, 러시아, 유럽의 기타 유럽, 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디아라비아, UAE, 남아프리카 공화국, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA)입니다.
아시아 태평양 지역은 정부 정책 및 규제로 인해 제조업 인공지능(AI) 시장을 주도하고 있습니다. 또한, AI 연구 개발 분야의 기술 발전과 실무에 AI 기술을 적용하는 인력 양성은 예측 기간 동안 이 지역의 제조업 인공지능(AI) 시장 성장을 더욱 가속화할 것입니다. 유럽은 향후 몇 년 동안 이 지역의 주요 기업들의 등장으로 제조업 인공지능(AI) 시장이 크게 성장할 것으로 예상됩니다.
보고서의 국가별 섹션은 개별 시장 영향 요인과 국내 시장 규제 변화도 제시하며, 이는 현재 및 미래 시장 동향에 영향을 미칩니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 동향, 포터의 5대 경쟁 요인 분석, 사례 연구 등의 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 활용됩니다. 또한, 글로벌 브랜드의 존재 및 가용성, 그리고 국내 및 국내 브랜드와의 경쟁 심화 또는 부족으로 인해 직면하는 과제, 국내 관세의 영향, 그리고 무역 경로 등을 고려하여 국가별 데이터를 예측 분석합니다.
제조업 시장 점유율 분석 에서 경쟁 환경과 인공지능(AI)
제조업 인공지능(AI) 시장 경쟁 구도는 경쟁사의 세부 정보를 제공합니다. 여기에는 회사 개요, 재무 상태, 매출 창출, 시장 잠재력, 연구 개발 투자, 신규 시장 진출 계획, 지역적 입지, 강점과 약점, 제품 출시, 제품 범위, 애플리케이션 지배력 등이 포함됩니다. 위에 제시된 데이터는 해당 기업들이 제조업 인공지능(AI) 시장에 집중하는 분야와 관련된 내용입니다.
제조업 분야의 인공지능(AI) 시장에서 활동하는 주요 기업으로는 NVIDIA Corporation, IBM, Alphabet Inc., Microsoft Corporation, Intel Corporation, Siemens, General Electric Company, General Vision, Inc., Progress Software Corporation, Micron Technology, Inc., Mitsubishi Electric Corporation, Sight Machine, Cisco Systems Inc., SAP SE, Rockwell Automation, Inc., AIBrain Inc., Vicarious, Oracle, Amazon Web Services, Inc., SparkCognition., Rethink Robotics, UBTECH Robotics, Inc., Aquant, Bright Machines, Inc., Flutura 등이 있습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
목차
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY POSITIONING GRID
2.2.5 COMAPANY MARKET SHARE ANALYSIS
2.2.6 MULTIVARIATE MODELLING
2.2.7 TOP TO BOTTOM ANALYSIS
2.2.8 STANDARDS OF MEASUREMENT
2.2.9 VENDOR SHARE ANALYSIS
2.2.10 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.11 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 REGULATIONS
5.2 PORTER FIVE FORCES
5.3 CASE STUDIES
6 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.2.1 PROCESSOR
6.2.1.1. GPU
6.2.1.2. ASIC
6.2.1.3. MPU
6.2.1.4. FPGA
6.2.2 MEMORY
6.2.3 NETWORK
6.3 SOFTWARE
6.3.1 AI SOLUTION
6.3.1.1. CLOUD
6.3.1.2. ON PREMISES
6.3.2 AI PLATFORM
6.3.2.1. APPLICATION PROGRAM INTERFACE (API)
6.3.2.2. MACHINE LEARNING FRAMEWORK
6.4 SERVICES
6.4.1 TRAINING AND CONSULTING
6.4.2 DEPLOYMENT AND INTEGRATION
6.4.3 SUPPORT AND MAINTENANCE
7 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY DEPLOYMENT MODEL
7.1 OVERVIEW
7.2 CLOUD
7.2.1 PUBLIC
7.2.2 PRIVATE
7.2.3 HYBRID
7.3 ON-PREMISES
8 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY ORGANIZATION SIZE
8.1 OVERVIEW
8.2 LARGE ENTERPRISE
8.2.1 BY DEPLOYMENT MODEL
8.2.1.1. CLOUD
8.2.1.2. ON PREMISES
8.3 SMALL AND MEDIUM-SIZED ENTERPRISES (SMES)
8.3.1 BY DEPLOYMENT MODEL
8.3.1.1. CLOUD
8.3.1.2. ON PREMISES
9 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY TECHNOLOGY
9.1 OVERVIEW
9.2 COMPUTER VISION
9.3 MACHINE LEARNING
9.3.1 DEEP LEARNING
9.3.2 REINFORCEMENT LEARNING
9.3.3 SUPERVISED LEARNING
9.3.4 UNSUPERVISED LEARNING
9.3.5 OTHERS
9.4 NATURAL LANGUAGE PROCESSING
9.5 CONTEXT-AWARE COMPUTING
9.6 OTHERS
10 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY APPLICATION
10.1 OVERVIEW
10.1.1 PREDICTIVE MAINTENANCE
10.1.2 QUALITY CONTROL
10.1.3 PRODUCTION PLANNING
10.1.4 FIELD SERVICES
10.1.5 MATERIAL MOVEMENT
10.1.6 PERFORMANCE OPTIMIZATION
10.1.7 ASSET AND CONDITION MONITORING
10.1.8 INDUSTRIAL ROBOTS
10.1.9 CYBERSECURITY
10.1.10 RECLAMATION
10.1.11 SAFETY
10.1.12 FINANCE MANAGEMENT
10.1.13 OTHERS
11 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY END USER
11.1 OVERVIEW
11.2 AUTOMOTIVE
11.2.1 BY TECHNOLOGY
11.2.1.1. COMPUTER VISION
11.2.1.2. MACHINE LEARNING
11.2.1.3. NATURAL LANGUAGE PROCESSING
11.2.1.4. COMPUTER VISION
11.2.1.5. CONTEXT-AWARE COMPUTING
11.2.1.6. OTHERS
11.3 SEMICONDUCTORS AND ELECTRONICS
11.3.1 BY TECHNOLOGY
11.3.1.1. COMPUTER VISION
11.3.1.2. MACHINE LEARNING
11.3.1.3. NATURAL LANGUAGE PROCESSING
11.3.1.4. COMPUTER VISION
11.3.1.5. CONTEXT-AWARE COMPUTING
11.3.1.6. OTHERS
11.4 HEAVY METALS AND MACHINE MANUFACTURING
11.4.1 BY TECHNOLOGY
11.4.1.1. COMPUTER VISION
11.4.1.2. MACHINE LEARNING
11.4.1.3. NATURAL LANGUAGE PROCESSING
11.4.1.4. COMPUTER VISION
11.4.1.5. CONTEXT-AWARE COMPUTING
11.4.1.6. OTHERS
11.5 HEALTHCARE AND PHARMACEUTICALS
11.5.1 BY TECHNOLOGY
11.5.1.1. COMPUTER VISION
11.5.1.2. MACHINE LEARNING
11.5.1.3. NATURAL LANGUAGE PROCESSING
11.5.1.4. COMPUTER VISION
11.5.1.5. CONTEXT-AWARE COMPUTING
11.5.1.6. OTHERS
11.6 ENERGY AND POWER
11.6.1 BY TECHNOLOGY
11.6.1.1. COMPUTER VISION
11.6.1.2. MACHINE LEARNING
11.6.1.3. NATURAL LANGUAGE PROCESSING
11.6.1.4. COMPUTER VISION
11.6.1.5. CONTEXT-AWARE COMPUTING
11.6.1.6. OTHERS
11.7 AEROSPACE
11.7.1 BY TECHNOLOGY
11.7.1.1. COMPUTER VISION
11.7.1.2. MACHINE LEARNING
11.7.1.3. NATURAL LANGUAGE PROCESSING
11.7.1.4. COMPUTER VISION
11.7.1.5. CONTEXT-AWARE COMPUTING
11.7.1.6. OTHERS
11.8 RETAIL AND E-COMMERCE
11.8.1 BY TECHNOLOGY
11.8.1.1. COMPUTER VISION
11.8.1.2. MACHINE LEARNING
11.8.1.3. NATURAL LANGUAGE PROCESSING
11.8.1.4. COMPUTER VISION
11.8.1.5. CONTEXT-AWARE COMPUTING
11.8.1.6. OTHERS
11.9 FOOD AND BEVERAGES
11.9.1 BY TECHNOLOGY
11.9.1.1. COMPUTER VISION
11.9.1.2. MACHINE LEARNING
11.9.1.3. NATURAL LANGUAGE PROCESSING
11.9.1.4. COMPUTER VISION
11.9.1.5. CONTEXT-AWARE COMPUTING
11.9.1.6. OTHERS
11.1 OTHERS
12 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY REGION
12.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
12.1.1 NORTH AMERICA
12.1.1.1. U.S.
12.1.1.2. CANADA
12.1.1.3. MEXICO
12.1.2 EUROPE
12.1.2.1. GERMANY
12.1.2.2. U.K.
12.1.2.3. FRANCE
12.1.2.4. ITALY
12.1.2.5. SPAIN
12.1.2.6. THE NETHERLANDS
12.1.2.7. SWITZERLAND
12.1.2.8. TURKEY
12.1.2.9. BELGIUM
12.1.2.10. RUSSIA
12.1.2.11. REST OF EUROPE
12.1.3 ASIA-PACIFIC
12.1.3.1. CHINA
12.1.3.2. JAPAN
12.1.3.3. SOUTH KOREA
12.1.3.4. INDIA
12.1.3.5. SINGAPORE
12.1.3.6. AUSTRALIA
12.1.3.7. MALAYSIA
12.1.3.8. PHILIPPINES
12.1.3.9. THAILAND
12.1.3.10. INDONESIA
12.1.3.11. REST OF ASIA-PACIFIC
12.1.4 SOUTH AMERICA
12.1.4.1. BRAZIL
12.1.4.2. ARGENTINA
12.1.4.3. REST OF SOUTH AMERICA
12.1.5 MIDDLE EAST AND AFRICA
12.1.5.1. SOUTH AFRICA
12.1.5.2. EGYPT
12.1.5.3. SAUDI ARABIA
12.1.5.4. U.A.E
12.1.5.5. ISRAEL
12.1.5.6. REST OF MIDDLE EAST AND AFRICA
12.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
13 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: GLOBAL
13.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
13.3 COMPANY SHARE ANALYSIS: EUROPE
13.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
13.5 MERGERS & ACQUISITIONS
13.6 NEW PRODUCT DEVELOPMENT & APPROVALS
13.7 EXPANSIONS
13.8 REGULATORY CHANGES
13.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
14 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, SWOT AND DBMR ANALYSIS
15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, COMPANY PROFILE
15.1 IBM
15.1.1 COMPANY SNAPSHOT
15.1.2 REVENUE ANALYSIS
15.1.3 GEOGRAPHIC PRESENCE
15.1.4 PRODUCT PORTFOLIO
15.1.5 RECENT DEVELOPMENTS
15.2 INTEL CORPORATION
15.2.1 COMPANY SNAPSHOT
15.2.2 REVENUE ANALYSIS
15.2.3 GEOGRAPHIC PRESENCE
15.2.4 PRODUCT PORTFOLIO
15.2.5 RECENT DEVELOPMENTS
15.3 MICROSOFT
15.3.1 COMPANY SNAPSHOT
15.3.2 REVENUE ANALYSIS
15.3.3 GEOGRAPHIC PRESENCE
15.3.4 PRODUCT PORTFOLIO
15.3.5 RECENT DEVELOPMENTS
15.4 NVIDIA CORPORATION
15.4.1 COMPANY SNAPSHOT
15.4.2 REVENUE ANALYSIS
15.4.3 GEOGRAPHIC PRESENCE
15.4.4 PRODUCT PORTFOLIO
15.4.5 RECENT DEVELOPMENTS
15.5 GOOGLE
15.5.1 COMPANY SNAPSHOT
15.5.2 REVENUE ANALYSIS
15.5.3 GEOGRAPHIC PRESENCE
15.5.4 PRODUCT PORTFOLIO
15.5.5 RECENT DEVELOPMENTS
15.6 AMAZON WEB SERVICES (AWS)
15.6.1 COMPANY SNAPSHOT
15.6.2 REVENUE ANALYSIS
15.6.3 GEOGRAPHIC PRESENCE
15.6.4 PRODUCT PORTFOLIO
15.6.5 RECENT DEVELOPMENTS
15.7 MICRON TECHNOLOGY
15.7.1 COMPANY SNAPSHOT
15.7.2 REVENUE ANALYSIS
15.7.3 GEOGRAPHIC PRESENCE
15.7.4 PRODUCT PORTFOLIO
15.7.5 RECENT DEVELOPMENTS
15.8 SIEMENS AG
15.8.1 COMPANY SNAPSHOT
15.8.2 REVENUE ANALYSIS
15.8.3 GEOGRAPHIC PRESENCE
15.8.4 PRODUCT PORTFOLIO
15.8.5 RECENT DEVELOPMENTS
15.9 SIGHT MACHINE
15.9.1 COMPANY SNAPSHOT
15.9.2 REVENUE ANALYSIS
15.9.3 GEOGRAPHIC PRESENCE
15.9.4 PRODUCT PORTFOLIO
15.9.5 RECENT DEVELOPMENTS
15.1 ORACLE
15.10.1 COMPANY SNAPSHOT
15.10.2 REVENUE ANALYSIS
15.10.3 GEOGRAPHIC PRESENCE
15.10.4 PRODUCT PORTFOLIO
15.10.5 RECENT DEVELOPMENTS
15.11 SAP SE
15.11.1 COMPANY SNAPSHOT
15.11.2 REVENUE ANALYSIS
15.11.3 GEOGRAPHIC PRESENCE
15.11.4 PRODUCT PORTFOLIO
15.11.5 RECENT DEVELOPMENTS
15.12 ROCKWELL AUTOMATION
15.12.1 COMPANY SNAPSHOT
15.12.2 REVENUE ANALYSIS
15.12.3 GEOGRAPHIC PRESENCE
15.12.4 PRODUCT PORTFOLIO
15.12.5 RECENT DEVELOPMENTS
15.13 PROGRESS SOFTWARE CORPORATION
15.13.1 COMPANY SNAPSHOT
15.13.2 REVENUE ANALYSIS
15.13.3 GEOGRAPHIC PRESENCE
15.13.4 PRODUCT PORTFOLIO
15.13.5 RECENT DEVELOPMENTS
15.14 MITSUBISHI ELECTRIC
15.14.1 COMPANY SNAPSHOT
15.14.2 REVENUE ANALYSIS
15.14.3 GEOGRAPHIC PRESENCE
15.14.4 PRODUCT PORTFOLIO
15.14.5 RECENT DEVELOPMENTS
15.15 VICARIOUS
15.15.1 COMPANY SNAPSHOT
15.15.2 REVENUE ANALYSIS
15.15.3 GEOGRAPHIC PRESENCE
15.15.4 PRODUCT PORTFOLIO
15.15.5 RECENT DEVELOPMENTS
15.16 AQUANT
15.16.1 COMPANY SNAPSHOT
15.16.2 REVENUE ANALYSIS
15.16.3 GEOGRAPHIC PRESENCE
15.16.4 PRODUCT PORTFOLIO
15.16.5 RECENT DEVELOPMENTS
15.17 RETHINK ROBOTICS GMBH
15.17.1 COMPANY SNAPSHOT
15.17.2 REVENUE ANALYSIS
15.17.3 GEOGRAPHIC PRESENCE
15.17.4 PRODUCT PORTFOLIO
15.17.5 RECENT DEVELOPMENTS
15.18 UBTECH ROBOTICS
15.18.1 COMPANY SNAPSHOT
15.18.2 REVENUE ANALYSIS
15.18.3 GEOGRAPHIC PRESENCE
15.18.4 PRODUCT PORTFOLIO
15.18.5 RECENT DEVELOPMENTS
15.19 SPARKCOGNITION
15.19.1 COMPANY SNAPSHOT
15.19.2 REVENUE ANALYSIS
15.19.3 GEOGRAPHIC PRESENCE
15.19.4 PRODUCT PORTFOLIO
15.19.5 RECENT DEVELOPMENTS
15.2 FLUTURA
15.20.1 COMPANY SNAPSHOT
15.20.2 REVENUE ANALYSIS
15.20.3 GEOGRAPHIC PRESENCE
15.20.4 PRODUCT PORTFOLIO
15.20.5 RECENT DEVELOPMENTS
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
16 CONCLUSION
17 QUESTIONNAIRE
18 RELATED REPORTS
19 ABOUT DATA BRIDGE MARKET RESEARCH

연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.