Global Ai Infrastructure Market
시장 규모 (USD 10억)
연평균 성장률 : %
예측 기간 |
2022 –2029 |
시장 규모(기준 연도) |
USD 23.50 Billion |
시장 규모(예측 연도) |
USD 422.55 Billion |
연평균 성장률 |
|
주요 시장 플레이어 |
글로벌 인공지능(AI) 인프라 시장, 제공(하드웨어, 소프트웨어), 기술(머신러닝, 딥러닝), 기능(트레이닝 및 추론), 배포 유형(온프레미스, 클라우드, 하이브리드), 최종 사용자(기업, 정부 기관, 클라우드 서비스 제공자) - 2029년까지의 산업 동향 및 예측
시장 분석 및 규모
인공 지능은 지난 몇 년 동안 엄청난 성장과 발전을 목격했으며, 몇 년 안에 더욱 널리 퍼질 것입니다. AI 인프라는 기업 데이터의 세계를 잘 최적화하고 간소화합니다. 데이터베이스와 메시지 큐잉 시스템을 통해 실행되는 머신 러닝 알고리즘은 AI 인프라로 훈련되어 데이터 전달 흐름을 제공합니다.
글로벌 인공지능(AI) 인프라 시장은 2021년에 235억 달러 규모로 평가되었으며, 2029년까지 4225억 5천만 달러에 도달할 것으로 예상되며, 2022-2029년 예측 기간 동안 43.50%의 CAGR을 기록할 것입니다. 클라우드는 데이터 센터 공급업체와 클라우드 회사의 수가 증가함에 따라 해당 시장에서 가장 큰 배포 유형 세그먼트를 차지합니다. Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 페슬 분석이 포함되어 있습니다.
시장 정의
인공 지능(AI) 인프라는 머신 러닝(ML)을 지원하는 기술을 말합니다. 이 기술은 확장 가능하고 신뢰할 수 있으며 구체적인 데이터 솔루션을 개발하고 배포하기 위한 머신 러닝과 인공 지능 솔루션의 조합을 의미합니다. AI 인프라는 처음부터 끝까지 전체 머신 러닝 프로세스를 가능하게 하는 핵심 요소로 알려져 있습니다.
보고 범위 및 시장 세분화
보고서 메트릭 |
세부 |
예측 기간 |
2022년부터 2029년까지 |
기준 연도 |
2021 |
역사적 연도 |
2020 (2014-2019로 사용자 정의 가능) |
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러 |
다루는 세그먼트 |
제공(하드웨어, 소프트웨어), 기술(머신러닝, 딥러닝), 기능(트레이닝 및 추론), 배포 유형(온프레미스, 클라우드, 하이브리드), 최종 사용자(기업, 정부 기관, 클라우드 서비스 제공자) |
적용 국가 |
미국, 북미의 캐나다 및 멕시코, 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽 국가, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양 국가(APAC), 사우디 아라비아, UAE, 이스라엘, 이집트, 남아프리카 공화국, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 남아메리카의 일부인 기타 남아메리카 국가. |
시장 참여자 포함 |
Cisco (US), IBM (US), Intel Corporation (US), SAMSUNG (South Korea), Google (US), Microsoft (US), Micron Technology, Inc (US), NVIDIA Corporation (US), Oracle (US), Arm Limited (UK), Xilinx (US), Advanced Micro Devices, Inc (US), Dell (US), Hewlett Packard Enterprises Development LP (US), Habana Labs Ltd (US), Facebook, Inc (US), Synopsys, Inc (US), Nutanix (US), Pure Storage, Inc (US), Amazon Web Services, Inc (US), among others |
Market Opportunities |
|
Artificial Intelligence (AI) Infrastructure Market Dynamics
This section deals with understanding the market drivers, advantages, opportunities, restraints and challenges. All of this is discussed in detail as below:
Drivers
Rise in Awareness regarding Artificial Intelligence (AI)
The increase in awareness regarding the incorporation of artificial intelligence (AI) into business processes among enterprises acts as one of the major factors driving the artificial intelligence (AI) infrastructure market. This technology enhances operational efficiency while reducing cost through automation of process flows.
- High Investments in Compute-Intensive Chip
GPU/CPU manufacturers, such as AMD, Qualcomm, NVIDIA, and Intel, among others increasing their investments in the development of chips that are compatible with AI solutions accelerate the market growth. Also, development of field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs) drives the market.
- Surge in the Adoption of Chatbots
The increase in the adoption of Chatbots to decline the operational costs for businesses that is estimated to be up to 30% further influence the market. AI is beneficial for solving a specific set of problems and working with a significant volume of high-quality Big Data.
Additionally, rapid urbanization, change in lifestyle, surge in investments and increased consumer spending positively impact the artificial intelligence (AI) infrastructure market..
Opportunities
Furthermore, surge in demand for FPGA-based accelerators and rise in need for co-processors due to slowdown of Moore’s Law extend profitable opportunities to the market players in the forecast period of 2022 to 2029. The rise in potential of AI-based tools for elderly care will further expand the market.
Restraints/Challenges
On the other hand, concerns regarding data privacy in AI platforms and lack of AI hardware experts and skilled workforce are expected to obstruct market growth. Also, availability of limited structured data to train and develop efficient AI systems and unreliability of AI algorithms are projected to challenge the artificial intelligence (AI) infrastructure market in the forecast period of 2022-2029.
This artificial intelligence (AI) infrastructure market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on artificial intelligence (AI) infrastructure market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
COVID-19 Impact on Artificial Intelligence (AI) Infrastructure Market
The COVID-19 pandemic had a positive impact on the artificial intelligence (AI) infrastructure market. It helped millions of people globally in leveraging advanced tools for various applications, especially healthcare. Artificial intelligence (AI) infrastructure was highly useful for numerous medical applications such as decoding genomic sequence for drug development, enhancement of CT scans, remote patient monitoring, and healthcare chatbots, among others. The artificial intelligence (AI) infrastructure market is expected to witness high growth Post-COVID-19 due to the adoption of smart manufacturing processes using AI, blockchain and IoT technologies.
Recent Developments
- Intel announced to launch a 3rd Gen Intel Xeon Scalable processor in April’2021. The processor provides a balanced architecture with built-in artificial intelligence, advanced security capabilities and crypto acceleration.
- AMD announced the news regarding acquisition of Xilinx in April’2021. The acquisition will offer both companies complementary product portfolios and assist in capitalizing opportunities in the industry.
Global Artificial Intelligence (AI) Infrastructure Market Scope and Market Size
The artificial intelligence (AI) infrastructure market is segmented on the basis of offering, technology, function, deployment and end-user. The growth amongst these segments will help you analyze meager growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.
Offering
- Hardware
- Software
Technology
- Machine Learning
- Deep Learning
Function
- Training
- Inference
Deployment Type
- On-Premises
- Cloud
- Hybrid
End-User
- Enterprises
- Government Organizations
- Cloud Service Provider
Artificial Intelligence (AI) Infrastructure Market Regional Analysis/Insights
The artificial intelligence (AI) infrastructure market is analysed and market size insights and trends are provided by country, offering, technology, function, deployment and end-user as referred above.
인공지능(AI) 인프라 시장 보고서에서 다루는 국가는 다음과 같습니다. 북미의 미국, 캐나다 및 멕시코, 유럽의 독일, 프랑스, 영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽 국가, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 이스라엘, 이집트, 남아프리카공화국, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 남아메리카의 일부인 기타 남아메리카.
북미는 AI 기반 서버의 채택률이 높고 지역 내에 뛰어난 AI 기술 공급업체가 있어 인공지능(AI) 인프라 시장을 장악하고 있습니다.
아시아 태평양(APAC) 지역은 5G 네트워크, 데이터 센터 등 '새로운 인프라' 프로젝트가 지역에 건설되면서 2022년부터 2029년까지의 예측 기간 동안 상당한 성장을 보일 것으로 예상됩니다.
보고서의 국가 섹션은 또한 개별 시장 영향 요인과 국내 시장의 현재 및 미래 트렌드에 영향을 미치는 규제 변화를 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 트렌드 및 포터의 5가지 힘 분석, 사례 연구와 같은 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 사용되는 몇 가지 포인터입니다. 또한 글로벌 브랜드의 존재 및 가용성과 지역 및 국내 브랜드와의 대규모 또는 희소한 경쟁으로 인해 직면한 과제, 국내 관세 및 무역 경로의 영향은 국가 데이터에 대한 예측 분석을 제공하는 동안 고려됩니다.
경쟁 환경 및 인공지능(AI) 인프라 시장
인공 지능(AI) 인프라 시장 경쟁 구도는 경쟁자별 세부 정보를 제공합니다. 포함된 세부 정보에는 회사 개요, 회사 재무, 창출된 수익, 시장 잠재력, 연구 개발 투자, 새로운 시장 이니셔티브, 글로벌 입지, 생산 현장 및 시설, 생산 용량, 회사의 강점과 약점, 제품 출시, 제품 폭과 범위, 애플리케이션 지배력이 있습니다. 위에 제공된 데이터 포인트는 인공 지능(AI) 인프라 시장과 관련된 회사의 초점에만 관련이 있습니다.
인공 지능(AI) 인프라 시장에서 운영되는 주요 업체 중 일부는 다음과 같습니다.
- 시스코(미국)
- IBM(미국)
- 인텔 코퍼레이션(미국)
- 삼성(한국)
- 구글(미국)
- 마이크로소프트(미국)
- 마이크론 테크놀로지 주식회사(미국)
- 엔비디아 코퍼레이션(미국)
- 오라클(미국)
- Arm Limited (영국)
- 자일링스(미국)
- Advanced Micro Devices, Inc(미국)
- 델(미국)
- 휴렛팩커드엔터프라이즈개발LP(미국)
- 하바나랩스(미국)
- Facebook, Inc (미국)
- 시놉시스 주식회사(미국)
- 뉴타닉스(미국)
- Pure Storage, Inc(미국)
- Amazon Web Services, Inc(미국)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.