製造業における世界の人工知能(AI)市場:提供分野(ハードウェア、ソフトウェア、サービス)、技術(機械学習、自然言語処理、コンテキストアウェアコンピューティング、コンピュータービジョン)、アプリケーション(予知保全と機械検査、資材移動、生産計画、フィールドサービス、品質管理、サイバーセキュリティ、産業用ロボットと再生)、業界(自動車、エネルギーと電力、医薬品、重金属と機械製造、半導体と電子機器、食品と飲料、その他)、国(米国、カナダ、メキシコ、ブラジル、アルゼンチン、その他の南米、ドイツ、イタリア、英国、フランス、スペイン、オランダ、ベルギー、スイス、トルコ、ロシア、その他のヨーロッパ、日本、中国、インド、韓国、オーストラリア、シンガポール、マレーシア、タイ、インドネシア、フィリピン、その他のアジア太平洋地域、サウジアラビア、UAE、南アフリカ、エジプト、イスラエル、その他の中東およびアフリカ)業界動向と2029年までの予測
製造業における人工知能(AI)市場は、2022年から2029年の予測期間において17.20%の成長率を記録し、2029年には53億2,510万米ドルに達すると予想されています。データブリッジ市場調査による製造業における人工知能(AI)市場に関するレポートは、予測期間を通じて広く普及すると予想される様々な要因に関する分析と洞察を提供し、それらが市場の成長に与える影響を明らかにしています。インテリジェントなビジネスプロセスへのAIの応用増加は、製造業における人工知能(AI)市場の成長を加速させています。
人工知能(AI)は、コンピュータサイエンスの分野において最も発展した技術の一つとして知られています。AIは、より優れた意思決定、言語理解など、人間の知能と類似した特性を有しています。
予測期間中に製造業における人工知能(AI)市場の成長を後押しすると予想される主な要因は、大規模で複雑なデータセットの増加と、産業用IoTおよび自動化の発展です。さらに、コンピューティング能力の向上も、製造業における人工知能(AI)市場の成長を緩和すると予測されています。さらに、ベンチャーキャピタル投資の増加も、製造業における人工知能(AI)市場の成長を緩和すると予測されています。一方、製造業者がAIベースの技術の導入に消極的であることも、タイムライン期間中の製造業における人工知能(AI)市場の成長を阻害すると予測されています。
さらに、製造工場の運用効率の向上と、COVID-19の影響を抑制するための自動化技術の導入拡大は、今後数年間における製造業における人工知能(AI)市場の成長にさらなる潜在的機会をもたらすでしょう。しかしながら、熟練労働力の不足とデータプライバシーに関する懸念は、近い将来、製造業における人工知能(AI)市場の成長をさらに阻害する可能性があります…。
この製造業における人工知能(AI)市場レポートは、最近の動向、貿易規制、輸出入分析、生産分析、バリューチェーンの最適化、市場シェア、国内および現地の市場プレーヤーの影響、新たな収益源の観点から見た機会分析、市場規制の変更、戦略的市場成長分析、市場規模、カテゴリー市場の成長、アプリケーションのニッチと優位性、製品承認、製品発売、地理的拡大、市場における技術革新など、詳細な情報を提供します。製造業における人工知能(AI)市場に関する詳細については、Data Bridge Market Researchまでアナリストブリーフをご請求ください。当社のチームが、市場成長を実現するための情報に基づいた意思決定を支援します。
製造業における人工知能(AI)の世界市場の範囲と市場規模
製造業における人工知能(AI)市場は、提供内容、技術、アプリケーション、業界に基づいてセグメント化されています。セグメント間の成長は、ニッチな成長領域と市場へのアプローチ戦略を分析し、コアアプリケーション領域とターゲット市場における差異を決定するのに役立ちます。
- 提供内容に基づいて、製造業における人工知能 (AI) 市場は、ハードウェア、ソフトウェア、サービスに分類されています。
- 技術に基づいて、製造業における人工知能 (AI) 市場は、機械学習、自然言語処理、コンテキスト認識コンピューティング、コンピューター ビジョンに分類されています。
- アプリケーションに基づいて、製造市場における人工知能 (AI) は、予知保全と機械検査、材料移動、生産計画、フィールドサービス、品質管理、サイバーセキュリティ、産業用ロボット、再生に分類されています。
- 業界別に見ると、製造業における人工知能 (AI) 市場は、自動車、エネルギーおよび電力、医薬品、重金属および機械製造、半導体および電子機器、食品および飲料、その他に分類されています。
製造業市場における人工知能(AI)の 国別分析
製造業における人工知能 (AI) 市場が分析され、上記のように国、提供、技術、アプリケーション、業界別に市場規模、数量情報が提供されます。
製造業における人工知能 (AI) 市場レポートでカバーされている国は、北米では米国、カナダ、メキシコ、南米ではブラジル、アルゼンチン、その他の南米、ヨーロッパではドイツ、イタリア、英国、フランス、スペイン、オランダ、ベルギー、スイス、トルコ、ロシア、ヨーロッパではその他のヨーロッパ、日本、中国、インド、韓国、オーストラリア、シンガポール、マレーシア、タイ、インドネシア、フィリピン、アジア太平洋地域 (APAC) ではその他のアジア太平洋地域、中東およびアフリカ (MEA) ではサウジアラビア、UAE、南アフリカ、エジプト、イスラエル、中東およびアフリカ (MEA) の一部としてのその他の中東およびアフリカ (MEA) です。
アジア太平洋地域は、政府の政策と規制により、製造業における人工知能(AI)市場を支配しています。さらに、AI研究開発における技術開発と、AI技術を職場に適用するための人材育成は、予測期間中にこの地域における製造業における人工知能(AI)市場の成長をさらに促進するでしょう。ヨーロッパでは、今後数年間で主要なキープレーヤーが台頭するため、製造業における人工知能(AI)市場が大幅な成長を遂げると予測されています。
本レポートの国別セクションでは、市場の現在および将来の動向に影響を与える個々の市場要因と国内市場における規制の変更についても説明しています。川下・川上バリューチェーン分析、技術トレンド、ポーターのファイブフォース分析、ケーススタディといったデータポイントは、各国の市場シナリオを予測するための指標として活用されています。また、グローバルブランドの存在と入手可能性、そして現地ブランドや国内ブランドとの競争の激しさや希少性によって直面する課題、国内関税の影響、貿易ルートなども考慮に入れ、国別データの予測分析を提供しています。
製造業における競争環境と人工知能(AI)の 市場シェア分析
製造業における人工知能(AI)市場の競争環境は、競合他社による詳細な情報を提供します。企業概要、財務状況、収益、市場ポテンシャル、研究開発投資、新規市場への取り組み、地域展開、強みと弱み、製品投入、製品群の幅広さ、アプリケーションの優位性などの詳細が含まれます。上記のデータは、製造業における人工知能(AI)市場における各企業の注力分野にのみ関連しています。
製造業における人工知能 (AI) 市場で活動している主要企業としては、NVIDIA Corporation、IBM、Alphabet Inc.、Microsoft Corporation、Intel Corporation、Siemens、General Electric Company、General Vision, inc.、Progress Software Corporation、Micron Technology, Inc.、三菱電機、Sight Machine、Cisco Systems Inc.、SAP SE、Rockwell Automation, Inc.、AIBrain Inc.、Vicarious、Oracle、Amazon Web Services, Inc.、SparkCognition、Rethink Robotics、UBTECH Robotics, Inc.、Aquant、Bright Machines, Inc.、Flutura などが挙げられます。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
目次
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY POSITIONING GRID
2.2.5 COMAPANY MARKET SHARE ANALYSIS
2.2.6 MULTIVARIATE MODELLING
2.2.7 TOP TO BOTTOM ANALYSIS
2.2.8 STANDARDS OF MEASUREMENT
2.2.9 VENDOR SHARE ANALYSIS
2.2.10 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.11 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 REGULATIONS
5.2 PORTER FIVE FORCES
5.3 CASE STUDIES
6 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.2.1 PROCESSOR
6.2.1.1. GPU
6.2.1.2. ASIC
6.2.1.3. MPU
6.2.1.4. FPGA
6.2.2 MEMORY
6.2.3 NETWORK
6.3 SOFTWARE
6.3.1 AI SOLUTION
6.3.1.1. CLOUD
6.3.1.2. ON PREMISES
6.3.2 AI PLATFORM
6.3.2.1. APPLICATION PROGRAM INTERFACE (API)
6.3.2.2. MACHINE LEARNING FRAMEWORK
6.4 SERVICES
6.4.1 TRAINING AND CONSULTING
6.4.2 DEPLOYMENT AND INTEGRATION
6.4.3 SUPPORT AND MAINTENANCE
7 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY DEPLOYMENT MODEL
7.1 OVERVIEW
7.2 CLOUD
7.2.1 PUBLIC
7.2.2 PRIVATE
7.2.3 HYBRID
7.3 ON-PREMISES
8 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY ORGANIZATION SIZE
8.1 OVERVIEW
8.2 LARGE ENTERPRISE
8.2.1 BY DEPLOYMENT MODEL
8.2.1.1. CLOUD
8.2.1.2. ON PREMISES
8.3 SMALL AND MEDIUM-SIZED ENTERPRISES (SMES)
8.3.1 BY DEPLOYMENT MODEL
8.3.1.1. CLOUD
8.3.1.2. ON PREMISES
9 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY TECHNOLOGY
9.1 OVERVIEW
9.2 COMPUTER VISION
9.3 MACHINE LEARNING
9.3.1 DEEP LEARNING
9.3.2 REINFORCEMENT LEARNING
9.3.3 SUPERVISED LEARNING
9.3.4 UNSUPERVISED LEARNING
9.3.5 OTHERS
9.4 NATURAL LANGUAGE PROCESSING
9.5 CONTEXT-AWARE COMPUTING
9.6 OTHERS
10 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY APPLICATION
10.1 OVERVIEW
10.1.1 PREDICTIVE MAINTENANCE
10.1.2 QUALITY CONTROL
10.1.3 PRODUCTION PLANNING
10.1.4 FIELD SERVICES
10.1.5 MATERIAL MOVEMENT
10.1.6 PERFORMANCE OPTIMIZATION
10.1.7 ASSET AND CONDITION MONITORING
10.1.8 INDUSTRIAL ROBOTS
10.1.9 CYBERSECURITY
10.1.10 RECLAMATION
10.1.11 SAFETY
10.1.12 FINANCE MANAGEMENT
10.1.13 OTHERS
11 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY END USER
11.1 OVERVIEW
11.2 AUTOMOTIVE
11.2.1 BY TECHNOLOGY
11.2.1.1. COMPUTER VISION
11.2.1.2. MACHINE LEARNING
11.2.1.3. NATURAL LANGUAGE PROCESSING
11.2.1.4. COMPUTER VISION
11.2.1.5. CONTEXT-AWARE COMPUTING
11.2.1.6. OTHERS
11.3 SEMICONDUCTORS AND ELECTRONICS
11.3.1 BY TECHNOLOGY
11.3.1.1. COMPUTER VISION
11.3.1.2. MACHINE LEARNING
11.3.1.3. NATURAL LANGUAGE PROCESSING
11.3.1.4. COMPUTER VISION
11.3.1.5. CONTEXT-AWARE COMPUTING
11.3.1.6. OTHERS
11.4 HEAVY METALS AND MACHINE MANUFACTURING
11.4.1 BY TECHNOLOGY
11.4.1.1. COMPUTER VISION
11.4.1.2. MACHINE LEARNING
11.4.1.3. NATURAL LANGUAGE PROCESSING
11.4.1.4. COMPUTER VISION
11.4.1.5. CONTEXT-AWARE COMPUTING
11.4.1.6. OTHERS
11.5 HEALTHCARE AND PHARMACEUTICALS
11.5.1 BY TECHNOLOGY
11.5.1.1. COMPUTER VISION
11.5.1.2. MACHINE LEARNING
11.5.1.3. NATURAL LANGUAGE PROCESSING
11.5.1.4. COMPUTER VISION
11.5.1.5. CONTEXT-AWARE COMPUTING
11.5.1.6. OTHERS
11.6 ENERGY AND POWER
11.6.1 BY TECHNOLOGY
11.6.1.1. COMPUTER VISION
11.6.1.2. MACHINE LEARNING
11.6.1.3. NATURAL LANGUAGE PROCESSING
11.6.1.4. COMPUTER VISION
11.6.1.5. CONTEXT-AWARE COMPUTING
11.6.1.6. OTHERS
11.7 AEROSPACE
11.7.1 BY TECHNOLOGY
11.7.1.1. COMPUTER VISION
11.7.1.2. MACHINE LEARNING
11.7.1.3. NATURAL LANGUAGE PROCESSING
11.7.1.4. COMPUTER VISION
11.7.1.5. CONTEXT-AWARE COMPUTING
11.7.1.6. OTHERS
11.8 RETAIL AND E-COMMERCE
11.8.1 BY TECHNOLOGY
11.8.1.1. COMPUTER VISION
11.8.1.2. MACHINE LEARNING
11.8.1.3. NATURAL LANGUAGE PROCESSING
11.8.1.4. COMPUTER VISION
11.8.1.5. CONTEXT-AWARE COMPUTING
11.8.1.6. OTHERS
11.9 FOOD AND BEVERAGES
11.9.1 BY TECHNOLOGY
11.9.1.1. COMPUTER VISION
11.9.1.2. MACHINE LEARNING
11.9.1.3. NATURAL LANGUAGE PROCESSING
11.9.1.4. COMPUTER VISION
11.9.1.5. CONTEXT-AWARE COMPUTING
11.9.1.6. OTHERS
11.1 OTHERS
12 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, BY REGION
12.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
12.1.1 NORTH AMERICA
12.1.1.1. U.S.
12.1.1.2. CANADA
12.1.1.3. MEXICO
12.1.2 EUROPE
12.1.2.1. GERMANY
12.1.2.2. U.K.
12.1.2.3. FRANCE
12.1.2.4. ITALY
12.1.2.5. SPAIN
12.1.2.6. THE NETHERLANDS
12.1.2.7. SWITZERLAND
12.1.2.8. TURKEY
12.1.2.9. BELGIUM
12.1.2.10. RUSSIA
12.1.2.11. REST OF EUROPE
12.1.3 ASIA-PACIFIC
12.1.3.1. CHINA
12.1.3.2. JAPAN
12.1.3.3. SOUTH KOREA
12.1.3.4. INDIA
12.1.3.5. SINGAPORE
12.1.3.6. AUSTRALIA
12.1.3.7. MALAYSIA
12.1.3.8. PHILIPPINES
12.1.3.9. THAILAND
12.1.3.10. INDONESIA
12.1.3.11. REST OF ASIA-PACIFIC
12.1.4 SOUTH AMERICA
12.1.4.1. BRAZIL
12.1.4.2. ARGENTINA
12.1.4.3. REST OF SOUTH AMERICA
12.1.5 MIDDLE EAST AND AFRICA
12.1.5.1. SOUTH AFRICA
12.1.5.2. EGYPT
12.1.5.3. SAUDI ARABIA
12.1.5.4. U.A.E
12.1.5.5. ISRAEL
12.1.5.6. REST OF MIDDLE EAST AND AFRICA
12.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
13 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: GLOBAL
13.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
13.3 COMPANY SHARE ANALYSIS: EUROPE
13.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
13.5 MERGERS & ACQUISITIONS
13.6 NEW PRODUCT DEVELOPMENT & APPROVALS
13.7 EXPANSIONS
13.8 REGULATORY CHANGES
13.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
14 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, SWOT AND DBMR ANALYSIS
15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN MANUFACTURING MARKET, COMPANY PROFILE
15.1 IBM
15.1.1 COMPANY SNAPSHOT
15.1.2 REVENUE ANALYSIS
15.1.3 GEOGRAPHIC PRESENCE
15.1.4 PRODUCT PORTFOLIO
15.1.5 RECENT DEVELOPMENTS
15.2 INTEL CORPORATION
15.2.1 COMPANY SNAPSHOT
15.2.2 REVENUE ANALYSIS
15.2.3 GEOGRAPHIC PRESENCE
15.2.4 PRODUCT PORTFOLIO
15.2.5 RECENT DEVELOPMENTS
15.3 MICROSOFT
15.3.1 COMPANY SNAPSHOT
15.3.2 REVENUE ANALYSIS
15.3.3 GEOGRAPHIC PRESENCE
15.3.4 PRODUCT PORTFOLIO
15.3.5 RECENT DEVELOPMENTS
15.4 NVIDIA CORPORATION
15.4.1 COMPANY SNAPSHOT
15.4.2 REVENUE ANALYSIS
15.4.3 GEOGRAPHIC PRESENCE
15.4.4 PRODUCT PORTFOLIO
15.4.5 RECENT DEVELOPMENTS
15.5 GOOGLE
15.5.1 COMPANY SNAPSHOT
15.5.2 REVENUE ANALYSIS
15.5.3 GEOGRAPHIC PRESENCE
15.5.4 PRODUCT PORTFOLIO
15.5.5 RECENT DEVELOPMENTS
15.6 AMAZON WEB SERVICES (AWS)
15.6.1 COMPANY SNAPSHOT
15.6.2 REVENUE ANALYSIS
15.6.3 GEOGRAPHIC PRESENCE
15.6.4 PRODUCT PORTFOLIO
15.6.5 RECENT DEVELOPMENTS
15.7 MICRON TECHNOLOGY
15.7.1 COMPANY SNAPSHOT
15.7.2 REVENUE ANALYSIS
15.7.3 GEOGRAPHIC PRESENCE
15.7.4 PRODUCT PORTFOLIO
15.7.5 RECENT DEVELOPMENTS
15.8 SIEMENS AG
15.8.1 COMPANY SNAPSHOT
15.8.2 REVENUE ANALYSIS
15.8.3 GEOGRAPHIC PRESENCE
15.8.4 PRODUCT PORTFOLIO
15.8.5 RECENT DEVELOPMENTS
15.9 SIGHT MACHINE
15.9.1 COMPANY SNAPSHOT
15.9.2 REVENUE ANALYSIS
15.9.3 GEOGRAPHIC PRESENCE
15.9.4 PRODUCT PORTFOLIO
15.9.5 RECENT DEVELOPMENTS
15.1 ORACLE
15.10.1 COMPANY SNAPSHOT
15.10.2 REVENUE ANALYSIS
15.10.3 GEOGRAPHIC PRESENCE
15.10.4 PRODUCT PORTFOLIO
15.10.5 RECENT DEVELOPMENTS
15.11 SAP SE
15.11.1 COMPANY SNAPSHOT
15.11.2 REVENUE ANALYSIS
15.11.3 GEOGRAPHIC PRESENCE
15.11.4 PRODUCT PORTFOLIO
15.11.5 RECENT DEVELOPMENTS
15.12 ROCKWELL AUTOMATION
15.12.1 COMPANY SNAPSHOT
15.12.2 REVENUE ANALYSIS
15.12.3 GEOGRAPHIC PRESENCE
15.12.4 PRODUCT PORTFOLIO
15.12.5 RECENT DEVELOPMENTS
15.13 PROGRESS SOFTWARE CORPORATION
15.13.1 COMPANY SNAPSHOT
15.13.2 REVENUE ANALYSIS
15.13.3 GEOGRAPHIC PRESENCE
15.13.4 PRODUCT PORTFOLIO
15.13.5 RECENT DEVELOPMENTS
15.14 MITSUBISHI ELECTRIC
15.14.1 COMPANY SNAPSHOT
15.14.2 REVENUE ANALYSIS
15.14.3 GEOGRAPHIC PRESENCE
15.14.4 PRODUCT PORTFOLIO
15.14.5 RECENT DEVELOPMENTS
15.15 VICARIOUS
15.15.1 COMPANY SNAPSHOT
15.15.2 REVENUE ANALYSIS
15.15.3 GEOGRAPHIC PRESENCE
15.15.4 PRODUCT PORTFOLIO
15.15.5 RECENT DEVELOPMENTS
15.16 AQUANT
15.16.1 COMPANY SNAPSHOT
15.16.2 REVENUE ANALYSIS
15.16.3 GEOGRAPHIC PRESENCE
15.16.4 PRODUCT PORTFOLIO
15.16.5 RECENT DEVELOPMENTS
15.17 RETHINK ROBOTICS GMBH
15.17.1 COMPANY SNAPSHOT
15.17.2 REVENUE ANALYSIS
15.17.3 GEOGRAPHIC PRESENCE
15.17.4 PRODUCT PORTFOLIO
15.17.5 RECENT DEVELOPMENTS
15.18 UBTECH ROBOTICS
15.18.1 COMPANY SNAPSHOT
15.18.2 REVENUE ANALYSIS
15.18.3 GEOGRAPHIC PRESENCE
15.18.4 PRODUCT PORTFOLIO
15.18.5 RECENT DEVELOPMENTS
15.19 SPARKCOGNITION
15.19.1 COMPANY SNAPSHOT
15.19.2 REVENUE ANALYSIS
15.19.3 GEOGRAPHIC PRESENCE
15.19.4 PRODUCT PORTFOLIO
15.19.5 RECENT DEVELOPMENTS
15.2 FLUTURA
15.20.1 COMPANY SNAPSHOT
15.20.2 REVENUE ANALYSIS
15.20.3 GEOGRAPHIC PRESENCE
15.20.4 PRODUCT PORTFOLIO
15.20.5 RECENT DEVELOPMENTS
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
16 CONCLUSION
17 QUESTIONNAIRE
18 RELATED REPORTS
19 ABOUT DATA BRIDGE MARKET RESEARCH

調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。