世界の人工知能(AI)インフラ市場の規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 69.44 Billion |
![]() |
USD 1,248.60 Billion |
![]() |
|
![]() |
|
世界の人工知能(AI)インフラストラクチャ市場のセグメンテーション:提供(ハードウェアとソフトウェア)、テクノロジー(機械学習とディープラーニング)、機能(トレーニングと推論)、導入タイプ(オンプレミス、クラウド、ハイブリッド)、エンドユーザー(企業、政府機関、クラウドサービスプロバイダー)別 - 2032年までの業界動向と予測
人工知能(AI)インフラ市場規模
- 世界の人工知能(AI)インフラ市場は2024年に694.4億ドルと評価され、 2032年までに1兆486億ドルに達すると予想されています。
- 2025年から2032年の予測期間中、市場は主にディープラーニングとニューラルネットワークの進歩によって43.50%のCAGRで成長すると予想されます。
- この成長は、AIモデルの複雑さの増大、業界のAI統合、クラウドとエッジAIの成長などの要因によって推進されています。
人工知能(AI)インフラ市場分析
- 人工知能(AI)インフラストラクチャとは、ディープラーニング、機械学習、データ処理などのAIワークロードの導入と拡張に不可欠なハードウェア、ソフトウェア、ネットワークコンポーネントを指します。これにより、組織は複雑なAIモデルと大量のデータ計算を効率的に処理できるようになります。
- 市場の成長は、主にAI活用アプリケーションの導入拡大、高性能コンピューティング(HPC)の需要増加、そしてディープラーニングとニューラルネットワークの進歩によって牽引されています。産業界がデジタルトランスフォーメーションを加速させるにつれ、拡張性と効率性に優れたAIインフラの必要性はかつてないほど高まっています。
- さらに、AIとクラウドコンピューティングの統合により、AIインフラストラクチャの状況は大きく変化しています。AI主導のソリューションは、ワークロードの分散を最適化し、コンピューティング効率を高め、リアルタイムのデータ処理能力を向上させます。
- 例えば、NVIDIAはAI専用のGPUとクラウドベースのAIコンピューティングプラットフォームを開発し、企業がディープラーニングアプリケーションに加速されたコンピューティングパワーを活用できるようにしています。
- AIインフラ市場は、AIチップセットの継続的な進歩、AIを活用した自動化の台頭、そしてデータセンターへの投資増加に牽引され、持続的な成長が見込まれています。リアルタイムAI分析、エッジコンピューティング、そして強化されたコンピューティングパワーへの需要の高まりが市場拡大をさらに促進し、企業は競争力維持のためにAIの拡張性と効率性を重視するでしょう。
レポートの範囲と人工知能(AI)インフラ市場のセグメンテーション
属性 |
人工知能(AI)インフラストラクチャの主要市場インサイト |
対象セグメント |
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
主要な市場プレーヤー |
|
市場機会 |
|
付加価値データ情報セット |
データブリッジ市場調査チームがまとめた市場レポートには、市場価値、成長率、市場セグメント、地理的範囲、市場プレーヤー、市場シナリオなどの市場洞察に加えて、専門家による詳細な分析、輸入/輸出分析、価格分析、生産消費分析、乳棒分析が含まれています。 |
人工知能(AI)インフラ市場の動向
「AIに最適化されたハードウェアの採用拡大」
- 世界の人工知能(AI)インフラ市場における顕著なトレンドの一つは、AIに最適化されたハードウェアの採用の増加である。
- この傾向は、インテリジェントなワークロード分散、予測メンテナンス、リアルタイム監視の需要の高まりによって推進されており、企業はインフラストラクチャコストを最小限に抑えながらAI運用を拡張できます。
- 例えば、GoogleはデータセンターにDeepMindのAI技術を導入し、冷却システムと全体的な効率を最適化することでエネルギー消費を大幅に削減しました。
- さらに、持続可能でエネルギー効率の高いAIインフラへの移行が加速すると予想され、企業はAIを活用して電力消費を最適化し、二酸化炭素排出量を削減するグリーンデータセンターに投資する。
- 競争が激化する中、テクノロジープロバイダーは、企業の進化するニーズに応えるため、高度なAI駆動型データセンターソリューションの開発を継続していくでしょう。クラウドコンピューティング、エッジコンピューティング、そしてハイパフォーマンスコンピューティングにおけるAIの統合が進むことで、市場はさらに活性化し、AIを活用したインフラは将来の技術革新の重要な推進力となるでしょう。
人工知能(AI)インフラ市場の動向
ドライバ
「高性能コンピューティング(HPC)の需要の高まり」
- 人工知能(AI)と自動化への依存度の高まりは、AIインフラ市場の成長を牽引する重要な要素です。企業が従来のコンピューティングフレームワークからAIを活用したシステムに移行するにつれ、複雑なワークロードに対応できる高性能インフラへの需要はかつてないほど高まっています。
- この移行は、ヘルスケア、金融、自動車などの業界で特に顕著であり、組織はAIインフラストラクチャを活用してリアルタイム分析、ディープラーニング、大規模データ処理をサポートしています。
- AIアプリケーションは膨大な計算能力を必要とするため、AIモデルのトレーニングと展開の複雑さが増しています。企業は現在、GPU、TPU、AIアクセラレーションサーバーなどのAIに最適化されたインフラストラクチャに投資し、処理能力の向上、レイテンシの削減、全体的な効率性の向上を目指しています。
- AI主導のクラウドサービスの導入が拡大するにつれ、企業は増大する計算需要を満たすために拡張可能で費用対効果の高いソリューションを求めており、高度なAIインフラストラクチャに対する需要がさらに高まっています。
- 高性能コンピューティング(HPC)、機械学習(ML)、AI専用プロセッサを統合することで、組織はAIワークロードを加速し、エネルギー効率を最適化し、データ集約型環境でのスケーラビリティを強化できます。
例えば、
- NVIDIAは、企業がより高速な処理速度で大規模なAIモデルをトレーニングできるようにするAI駆動型スーパーコンピューティングインフラストラクチャであるDGX SuperPODを発表しました。
- GoogleのTensor Processing Unit(TPU)は、AIモデルのトレーニングを強化し、クラウドベースのAIソリューションの効率性を向上させ、消費電力を削減するように設計されている。
- AIインフラの継続的な進歩、企業投資の増加、そしてリアルタイムAI処理のニーズにより、堅牢なAIインフラソリューションへの需要は今後も高まり続けるでしょう。これにより市場が拡大し、企業はAI主導のイノベーションをより効果的に展開し、運用パフォーマンスを向上させることができるようになります。
機会
「FPGAベースのアクセラレータの需要が急増」
- FPGA(Field-Programmable Gate Array)ベースのアクセラレータの需要の急増は、AIインフラ市場にとって大きなビジネスチャンスとなっています。AIワークロードが複雑化するにつれ、企業はパフォーマンスを最適化し、レイテンシを削減するための、柔軟性と効率性に優れたハードウェアソリューションを求めています。
- FPGAベースのアクセラレータは、特定のAIタスクに合わせて再構成することができ、パフォーマンス、電力効率、カスタマイズのバランスが取れているため、注目を集めています。
- 従来のGPUやCPUとは異なり、FPGAは消費電力が低く、計算スループットが高いため、AIモデル推論、ディープラーニング、エッジコンピューティングアプリケーションに最適です。
例えば、
- インテルのAgilex FPGAは、データセンターやエッジ環境におけるAIワークロードを加速するように設計されており、進化するAIモデルに最適な電力効率と適応性を提供します。
- Microsoft Azureは、 Project Brainwaveを通じてFPGAベースのAIアクセラレーションを提供し、企業がクラウドでディープラーニングの推論パフォーマンスを強化できるようにします。
- 企業がAI主導のインフラに投資するにつれて、FPGAベースのアクセラレータの需要は増加し続け、さまざまな業界でAIモデルの導入とパフォーマンスの最適化におけるイノベーションを促進します。
抑制/挑戦
「AIワークロードの複雑性の増大」
- 人工知能(AI)モデルの高度化が進むにつれ、企業は複雑なワークロードを効率的に処理するために高性能コンピューティング(HPC)機能を求めるようになり、AIインフラストラクチャ市場にとって大きな課題となっている。
- AIアプリケーションが進化するにつれて、ディープラーニングモデル、自然言語処理(NLP)、コンピュータービジョンタスクではより大きな計算能力が必要となり、その結果、エネルギー消費量が増加し、インフラコストが増加します。
- さらに、自動運転、ヘルスケア、金融などの業界ではリアルタイムのAI処理が求められており、AIインフラプロバイダーは低遅延で高速なソリューションを提供するプレッシャーがさらに高まっています。
例えば、
- テスラは自動運転車のトレーニングに AI搭載HPCシステムを活用しており、実際の運転データを処理するために膨大な計算リソースを必要としている。
- AIワークロードがますます複雑になるにつれ、企業は拡張性とコスト効率を維持するために、高度なコンピューティングインフラストラクチャ、効率的なリソース管理、エネルギー効率の高い処理ソリューションに投資する必要があります。
人工知能(AI)インフラ市場の展望
市場は、提供内容、テクノロジー、機能、展開タイプ、エンドユーザーに基づいてセグメント化されています。
セグメンテーション |
サブセグメンテーション |
提供することで |
|
テクノロジー別 |
|
機能別 |
|
展開タイプ別 |
|
エンドユーザー別 |
|
人工知能(AI)インフラ市場の地域分析
「北米は人工知能(AI)インフラ市場において主要な地域である」
- 北米は、主要なAI技術プロバイダーの存在と、AI搭載サーバーおよび高性能コンピューティング(HPC)システムの広範な採用により、人工知能(AI)インフラストラクチャ市場を支配しています。
- 米国は、AI研究、クラウドコンピューティング、そしてGoogle、Microsoft、Amazon Web Services(AWS)などのテクノロジー大手によるAI駆動型データセンターの急速な展開におけるリーダーシップにより、大きなシェアを占めています。
- この地域の強力なITインフラ、AI主導のエンタープライズアプリケーションの成長、AIハードウェアソリューションへの投資の増加が、市場の優位性に貢献しています。
- さらに、自動化、予測分析、クラウドベースのAIサービスにおけるAIの利用増加により、北米のAIインフラストラクチャにおけるリーダーシップがさらに強化されています。
「アジア太平洋地域は最も高い成長率を記録すると予測される」
- アジア太平洋地域は、政府支援によるデジタル変革イニシアチブとクラウドコンピューティングおよびAIベースのデータセンターの急速な拡大により、人工知能(AI)インフラストラクチャ市場で最も高い成長率を示すことが予想されています。
- 中国、インド、日本などの国々は、5Gネットワーク、スマートシティ、大規模データセンター建設などの「新しいインフラ」プロジェクトを含むAIを活用したインフラに多額の投資を行っている。
- 製造業、電子商取引、金融サービスなどの業界におけるAIアプリケーションの需要の高まりにより、スケーラブルで高性能なAIインフラストラクチャソリューションの必要性が高まっています。
- アジア太平洋地域全体で企業がAI導入を加速する中、進化するデジタル経済の高まる需要に応える高度なコンピューティングソリューションを提供するAIインフラプロバイダーにとって、アジア太平洋地域は魅力的な機会を提供しています。
人工知能(AI)インフラ市場シェア
市場競争環境は、競合他社ごとに詳細な情報を提供します。企業概要、財務状況、収益、市場ポテンシャル、研究開発投資、新規市場への取り組み、グローバルプレゼンス、生産拠点・設備、生産能力、強みと弱み、製品投入、製品群の幅広さ、アプリケーションにおける優位性などの詳細が含まれます。上記のデータは、各社の市場への注力分野にのみ関連しています。
市場で活動している主要なマーケットリーダーは次のとおりです。
- シスコシステムズ社(米国)
- IBM(米国)
- インテルコーポレーション(米国)
- サムスン(韓国)
- Google(米国)
- マイクロソフト(米国)
- マイクロンテクノロジー社(米国)
- NVIDIAコーポレーション(米国)
- オラクル(米国)
- アーム・リミテッド(英国)
- アドバンスト・マイクロ・デバイセズ社(米国)
- デル社(米国)
- ヒューレット・パッカード・エンタープライズ・デベロップメントLP(米国)
- ターゲット(米国)
- シノプシス社(米国)
- ニュータニックス(米国)
- ピュア・ストレージ社(米国)
- Amazon Web Services Inc.(米国)
世界の人工知能(AI)インフラ市場の最新動向
- 2022年2月、AMDはザイリンクスの買収を全額株式交換で完了したことを発表しました。この戦略的買収により、ザイリンクスの業界をリードするアダプティブコンピューティング技術とAMDの高性能コンピューティングソリューションを統合することで、AMDの能力が強化されます。
- 2021年4月、インテルは、統合された人工知能、高度なセキュリティ機能、暗号化アクセラレーションを備えたバランスの取れたアーキテクチャを備えた第3世代インテルXeonスケーラブルプロセッサーの発売を発表しました。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。