農業における人工知能の世界市場 - 業界動向と2032年までの予測

Request for TOC TOC のリクエスト Speak to Analyst アナリストに相談する Free Sample Report 無料サンプルレポート Inquire Before Buying 事前に問い合わせる Buy Now今すぐ購入

農業における人工知能の世界市場 - 業界動向と2032年までの予測

農業における人工知能の世界市場:提供分野(ハードウェア、ソフトウェア、サービス)、技術(機械学習(ML)、コンピュータービジョン、自然言語処理(NLP)、ロボット工学と自動化など)、用途(精密農業、家畜監視、天気予報、土壌管理、作物の健康状態監視、サプライチェーン最適化など)、導入形態(オンプレミス、クラウド)、エンドユーザー(農場、アグロテック企業、農薬企業、研究機関など)別 - 2032年までの業界動向と予測

  • ICT
  • Feb 2025
  • Global
  • 350 ページ
  • テーブル数: 220
  • 図の数: 60
  • Author : Megha Gupta

農業における人工知能の世界市場

Market Size in USD Billion

CAGR :  % Diagram

Chart Image USD 2.08 Billion USD 10.49 Billion 2025 2032
Diagram 予測期間
2026 –2032
Diagram 市場規模(基準年)
USD 2.08 Billion
Diagram Market Size (Forecast Year)
USD 10.49 Billion
Diagram CAGR
%
Diagram Major Markets Players
  • Hewlett Packard Enterprise Development LP
  • Cisco SystemsInc.
  • IBM Corporation
  • Microsoft
  • Amazon Web Services Inc.

農業における人工知能の世界市場:提供分野(ハードウェア、ソフトウェア、サービス)、技術(機械学習(ML)、コンピュータービジョン、自然言語処理(NLP)、ロボット工学と自動化など)、用途(精密農業、家畜監視、天気予報、土壌管理、作物の健康状態監視、サプライチェーン最適化など)、導入形態(オンプレミス、クラウド)、エンドユーザー(農場、アグロテック企業、農薬企業、研究機関など)別 - 2032年までの業界動向と予測

 農業における人工知能の市場規模

Data Bridge Market Researchの分析によると、世界の農業における人工知能市場は、予測期間中に年平均成長率(CAGR)22.39%で成長し、2032年には104億9,000万米ドル、 2025年には20億8,000万米ドルに達すると予測されています。この世界の農業における人工知能市場レポートでは、価格分析、特許分析、技術進歩についても包括的に取り上げています。

 農業市場分析における人工知能

農業における人工知能(AI)の世界市場は、いくつかの重要な要因に牽引され、大幅な成長が見込まれています。その主な原動力は、TEMソリューションが提供する大幅なコスト削減であり、通信費の最適化を目指す企業にとって魅力的です。携帯電話やその他のポータブルデバイスの普及に伴い、効果的な経費管理ソリューションの需要がさらに高まっています。TEMは重要な経費の透明性を提供し、組織が通信費をより適切に把握・管理することを可能にします。さらに、IoTやクラウドベースのアプリケーションの台頭により、これらの技術が通信費管理に新たな複雑さをもたらすため、TEMソリューションの需要が高まっています。しかし、市場は制約に直面しており、特に地域によって異なる通信規制やコンプライアンス要件への対応が課題となっており、導入と管理が複雑化しています。これらの課題にもかかわらず、大きな成長の機会が存在します。通信費管理の自動化技術は大きなビジネスチャンスをもたらし、コスト効率と専門知識を提供できるTEMソリューションのアウトソーシングも同様にビジネスチャンスをもたらします。 

農業市場における人工知能(AI)

レポートメトリック

詳細

予測期間

2025年から2032年

基準年

2024

歴史的な年

2023年(2018-2022年)

定量単位

収益(10億米ドル)

対象セグメント

 提供内容(ハードウェア、ソフトウェア、サービス)、テクノロジー(機械学習(ML)、 コンピュータービジョン、 自然言語処理(NLP)、ロボット工学と自動化など)、アプリケーション(精密農業、 家畜監視、天気予報、土壌管理、作物の健康監視、サプライチェーン最適化など)、導入モード(オンプレミスおよびクラウド)、エンドユーザー(農場、農業技術企業、農薬会社、研究機関など)

対象国

米国、カナダ、メキシコ、ドイツ、フランス、英国、オランダ、スイス、ベルギー、ロシア、イタリア、スペイン、トルコ、その他のヨーロッパ諸国、中国、日本、インド、韓国、シンガポール、マレーシア、オーストラリア、タイ、インドネシア、フィリピン、その他のアジア太平洋諸国、サウジアラビア、UAE、南アフリカ、エジプト、イスラエル、その他の中東およびアフリカ諸国、ブラジル、アルゼンチン、その他の南米諸国

対象となる市場プレーヤー

ディア・アンド・カンパニー、IBM、マイクロソフト、グーグル、OpenAI、Open Text Corporation、ClimateAi、AgEagle Aerial Systems Inc.、CNH Industrial NV、AGCO Corporation、クボタ株式会社、ヤンマーホールディングス株式会社、デラバル、Lely、Raven Industries, Inc.、Gamaya、バイエルAG、VALMONT INDUSTRIES, INC.、シスコシステムズ株式会社、オラクル、Harvest CROO Robotics LLC、ADM、シンジェンタ・グローバル、コルテバ、Bowery Farming Inc.など

市場定義

世界の農業における人工知能(AI)市場は、  AIを活用して農業活動を強化する技術 とソリューションを網羅しています。これには、機械学習、コンピュータービジョン、ロボティクスなどが含まれており、作物管理、精密農業、資源配分の最適化に役立ちます。市場は、農業における効率、収量、持続可能性の向上を目的とした、データ分析、自律型農業機械、予測分析のためのAI駆動型ツールを網羅しています。作物のモニタリング、土壌管理、害虫駆除、サプライチェーンの最適化など、幅広い用途に活用されています。

農業市場における世界の人工知能の動向

ドライバー

  • 作物の監視と収穫量予測の精度向上

農業における人工知能(AI)は、作物のモニタリングと収穫量予測の精度を向上させます。機械学習アルゴリズムとデータ分析を活用することで、AIは衛星画像、土壌センサー、天気予報など、様々な情報源から得られる膨大なデータを分析できます。これにより、農家は作物の健全性を監視し、害虫の発生を特定し、収穫量をより正確に予測できるようになります。その結果、AI主導の洞察は、資源配分の最適化、意思決定の改善、そして農業全体の生産性向上に役立ちます。

例えば、

  • 2021年7月、Gramenerが公開したブログによると、機械学習とAIを用いた作物の収穫量予測の重要性が高まっているという。記事では、空間分析とIoTデバイスが作物の監視と収穫量予測をどのように強化したかについて論じている。衛星画像と気象データを活用するAIと機械学習モデルは、土壌条件と気象パターンを評価することで、作物の収穫量予測の精度を向上させた。これらの技術の活用は、遠隔監視、効率的な資源マッピング、予測分析を可能にし、より良い意思決定と計画を促進することで、農業生産者に利益をもたらしている。この進歩は、より効果的な作物管理を支える。

AIを活用したより優れた農業技術の導入拡大

AIを活用したより優れた農業技術の導入拡大には、  水、肥料、農薬などの投入資材の最適な利用が不可欠です。AIを活用したソリューションは、これらの資源を正確に管理し、必要な場所にのみ効率的に投入することを可能にします。これにより、無駄を最小限に抑え、収穫量を最大化することでコスト削減と生産性向上を実現し、最終的にはより持続可能で収益性の高い農業を実現します。

例えば、

  • 2024年1月、Intelliasが発表した記事によると、AIは農技術の向上によって農業に大きな影響を与えました。AIは水、肥料、農薬の正確な管理を可能にし、コスト削減と生産性向上をもたらしました。自動化システムは灌漑と施肥を最適化し、作物の収量と資源効率の向上をもたらしました。これらの進歩は、より持続可能で収益性の高い農業慣行を支え、最終的には収量の向上とコスト削減を通じて農家に利益をもたらしました。

機会

  • 通信費管理の自動化技術

通信費管理(TEM)の自動化技術は、プロセスを合理化し、精度を高め、コストを削減します。自動化ツールとソフトウェアを活用することで、 通信事業者 や企業は請求書管理、経費追跡、使用パターンのリアルタイム分析を効率的に行うことができます。この技術は透明性と管理性を向上させ、データに基づくインサイトに基づいた積極的な意思決定を可能にします。さらに、自動化は人的ミスを最小限に抑え、規制要件へのコンプライアンスを確保し、リソース配分を最適化し、TEMを戦略的資産へと変革します。

例えば、

  • 2022年7月にBrightfinが発表した記事によると、自動化された通信費管理システムへの移行は、複数のメリットをもたらしました。まず、通信関連の問題に関するヘルプデスクへの問い合わせ件数が大幅に削減され、ITリソースの負担が軽減されました。また、この自動化により、請求書処理や経費管理といった定型業務を自動化することで従業員の時間を節約し、より重要なプロジェクトに集中できるようになりました。さらに、自動化によって人的ミスも削減され、業務の一貫性と効率性が確保されました。さらに、このシステムは貴重なデータインサイトを提供し、通信管理プロセスの合理化を通じてコスト削減にも貢献しました。
  • PAGが発表した記事によると、自動化は通信費管理に変革をもたらしています。使用状況の監視や請求書の照合といった業務を効率化し、特に病院や医療機関にとって大きなメリットとなっています。自動化ソリューションは監査にかかる時間と労力を削減し、機器の使用状況や通信契約を最適化することで大幅なコスト削減を実現します。

抑制/挑戦

  • 永続データのプライバシーとセキュリティに関する懸念

農業におけるAIの有望な進歩にもかかわらず、根強いデータプライバシーとセキュリティに関する懸念が、これらのメリットを覆い隠しています。AIシステムは、作物の収穫量、土壌の状態、農場の運営など、膨大な量の機密性の高い農業データを収集・分析するため、農家を重大なリスクにさらしています。これらのデータへの不正アクセスや漏洩は、知的財産の喪失、機密情報の改ざん、サイバー攻撃に対する脆弱性の増大など、深刻な結果につながる可能性があります。これらのセキュリティ上の問題は、AI技術への信頼を損ない、その広範な導入を妨げています。

例えば

  • ShardSecureが公開したブログによると、2023年8月、農業はデータプライバシーとセキュリティに関する懸念の高まりに直面していました。2021年にJBS Foodsを襲ったランサムウェア攻撃などのサイバー攻撃は、この分野の脆弱性を浮き彫りにしました。精密農業は膨大な量のデータを生み出し、IoTデバイスの台頭により、リスクは増大しています。新たに設立された食品農業情報共有・分析センターは、これらの問題に対処することを目的としています。しかし、多くのアグリビジネスは依然としてデータセキュリティ、コンプライアンス、そしてAI関連の脅威からの保護に苦慮しています。セキュリティ対策を強化することで、機密データを保護し、コストのかかる混乱のリスクを軽減することで、企業にメリットをもたらすことができます。

新型コロナウイルス感染症後の世界の農業市場における人工知能(AI)への影響

COVID-19後の状況は、世界市場に大きな影響を与えました。しかし、経済が徐々に回復するにつれて、インフラ開発への注目が高まり、プロジェクトが再び活発化しています。業界は、強化された安全対策やデジタル技術の活用により、新たな規範への適応を進めており、プロセスを合理化しています。建設プロジェクトが再び勢いを取り戻すにつれ、通信サービスの需要も回復しつつあり、市場関係者にとって、パンデミック後の時代における国のインフラ成長に貢献する機会が生まれています。

最近の動向

例えば、

  • 2024年6月、TeeJet Technologiesは、革新的な可動部品のない設計によるメンテナンスフリー操作、流体条件全体にわたる最適化されたパフォーマンス、幅広いアプリケーション互換性を特徴とするFM9380-F75電磁流量計を発売しました。これにより、精密農業製品ポートフォリオにメリットがもたらされ、運用効率が向上します。
  • 2023年11月、クボタ株式会社はアグリテクニカにおいて、自律農業技術の飛躍的な進歩を示す「アグリロボKVT」を展示しました。この改良型トラクターは、労働力不足への対応、安全性の向上、効率的な農業の促進に貢献し、市場競争力とイノベーションにおけるリーダーシップの強化というメリットをもたらしました。

農業における人工知能の世界市場規模

農業における人工知能市場は、提供内容、技術、用途、導入形態、エンドユーザーに基づいて、5つの主要なセグメントに分類されています。これらのセグメントの成長は、業界における成長の少ないセグメントの分析に役立ち、ユーザーに貴重な市場概要と市場インサイトを提供し、コア市場アプリケーションを特定するための戦略的意思決定を支援します。

この調査レポートでは、世界の農業市場における人工知能を以下のセグメントに分類しています。

提供

  • ハードウェア
  • ソフトウェア
  • サービス

提供内容に基づいて、市場はハードウェア、ソフトウェア、サービスに分類されます。

テクノロジー

  • 機械学習(ML)
  • コンピュータービジョン
  • 自然言語処理(NLP)
  • ロボット工学と自動化
  • その他

テクノロジーに基づいて、市場は機械学習 (ML)、コンピュータービジョン、自然言語処理 (NLP)、ロボット工学と自動化などに分類されます。

応用

  • 精密農業
  • 家畜監視
  • 天気予報
  • 土壌管理
  • 作物の健康状態監視
  • サプライチェーンの最適化
  • その他

アプリケーションに基づいて、市場は精密農業、家畜監視、天気予報、土壌管理、作物の健康監視、サプライチェーンの最適化などに分類されます。

展開モード

  • オンプレミス

展開モードに基づいて、市場はクラウドとオンプレミスに分類されます。

エンドユーザー

  • 農場
  • アグロテック企業
  • 農薬会社
  • 研究機関
  • その他

エンドユーザーに基づいて、市場は農場、農業技術会社、農薬会社、研究機関などに分類されます。

農業市場における世界の人工知能

世界の農業における人工知能市場は、提供内容、技術、用途、導入形態、エンドユーザーに基づいて、5つの主要なセグメントに分類されています。世界の農業におけるモノのインターネット(IoT)市場は、北米では米国、カナダ、メキシコ、ドイツ、フランス、英国、オランダ、スイス、ベルギー、ロシア、イタリア、スペイン、トルコ、その他ヨーロッパ諸国、中国、日本、インド、韓国、シンガポール、マレーシア、オーストラリア、タイ、インドネシア、フィリピン、その他アジア太平洋諸国、サウジアラビア、UAE、南アフリカ、エジプト、イスラエル、その他中東およびアフリカ諸国、ブラジル、アルゼンチン、その他南米諸国を対象としています。

北米では、米国がハードウェア部品サプライヤー数で世界最大規模を誇り、優位に立っています。また、欧州では、英国が国全体の技術進歩により優位に立っています。アジア太平洋地域では、中国が地域最大のハードウェア部品メーカーを擁し、優位に立っています。

レポートの国別セクションでは、市場の現在および将来の動向に影響を与える個別の市場要因と市場規制の変更についても説明しています。川下・川上バリューチェーン分析、技術トレンド、ポーターのファイブフォース分析、ケーススタディといったデータポイントは、各国の市場シナリオを予測するための指標として活用されています。また、APACブランドの存在と入手可能性、そして現地ブランドや国内ブランドとの競争の激しさや希少性によって直面する課題、国内関税の影響、貿易ルートなども考慮に入れ、国別データの予測分析を提供しています。   

農業市場における競争環境と世界的な人工知能のシェア分析

世界の農業における人工知能市場の競争環境は、競合他社の詳細情報を提供します。企業概要、財務状況、収益、市場ポテンシャル、研究開発投資、新規市場への取り組み、アジア太平洋地域および東南アジアにおけるプレゼンス、生産拠点および設備、生産能力、企業の強みと弱み、製品の発売、製品の幅広さと広がり、アプリケーションの優位性などの詳細が含まれています。上記のデータは、世界の農業における人工知能市場における企業の注力分野にのみ関連しています。世界の農業における人工知能市場で活動している主要企業には、Open Text Corporation、OpenAI、VALMONT INDUSTRIES, INC.、AGCO Corporation、IBMなどがあります。


SKU-

世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする

  • インタラクティブなデータ分析ダッシュボード
  • 成長の可能性が高い機会のための企業分析ダッシュボード
  • カスタマイズとクエリのためのリサーチアナリストアクセス
  • インタラクティブなダッシュボードによる競合分析
  • 最新ニュース、更新情報、トレンド分析
  • 包括的な競合追跡のためのベンチマーク分析のパワーを活用
デモのリクエスト

調査方法

データ収集と基準年分析は、大規模なサンプル サイズのデータ​​収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。

DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。

カスタマイズ可能

Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

Frequently Asked Questions

市場は 農業における人工知能の世界市場:提供分野(ハードウェア、ソフトウェア、サービス)、技術(機械学習(ML)、コンピュータービジョン、自然言語処理(NLP)、ロボット工学と自動化など)、用途(精密農業、家畜監視、天気予報、土壌管理、作物の健康状態監視、サプライチェーン最適化など)、導入形態(オンプレミス、クラウド)、エンドユーザー(農場、アグロテック企業、農薬企業、研究機関など)別 - 2032年までの業界動向と予測 に基づいて分類されます。
農業における人工知能の世界市場の規模は2025年にUSD 2.08 USD Billionと推定されました。
農業における人工知能の世界市場は2026年から2032年の予測期間にCAGR 22.39%で成長すると見込まれています。
市場で活動している主要プレーヤーはHewlett Packard Enterprise Development LP , Cisco SystemsInc. , IBM Corporation , Microsoft , Amazon Web Services Inc. , Oracle , Google LLC , Broadcom , Descartes LabsInc. , Wipro Limited. , Deere & Company , GranularInc. , aWhere Inc. , The Climate Corporation AGribotix LLC , Tule Technologies Inc , Prospera Technologies , CropX inc. , Harvest CROO Robotics LLC. and FarmBot です。
Testimonial