Image

アジア太平洋地域の創薬市場における人工知能(AI) - 2029年までの業界動向と予測

健康管理

Image

アジア太平洋地域の創薬市場における人工知能(AI) - 2029年までの業界動向と予測

  • 健康管理
  • 公開レポート
  • 2022年8月
  • アジア太平洋地域
  • 350 ページ
  • テーブル数: 149
  • 図の数: 43

アジア太平洋地域の創薬における人工知能 (AI) 市場、アプリケーション別 (新薬候補、薬物の最適化と転用、前臨床試験と承認、薬物モニタリング、新しい疾患関連ターゲットと経路の発見、疾患メカニズムの理解、情報の集約と統合、仮説の形成と適格性、デノボ薬物設計、古い薬物の薬物ターゲットの発見など)、テクノロジー別 (機械学習、ディープラーニング、自然言語処理など)、薬物タイプ別 (小分子と巨大分子)、提供内容別 (ソフトウェアとサービス)、適応症別 (免疫腫瘍学、神経変性疾患、心血管疾患、代謝性疾患など)、最終用途別 (開発業務受託機関 (CRO)、製薬およびバイオテクノロジー企業、研究センターと学術機関など) 業界動向と 2029 年までの予測。

Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market

アジア太平洋地域の創薬市場における人工知能(AI)の分析と洞察

人工知能 (AI) は、ヘルスケア業界では利益を生む技術になると期待されています。AI の導入により、医薬品製造プロセスにおける研究開発ギャップが縮小され、ターゲットを絞った医薬品の製造に役立ちます。そのため、バイオ医薬品企業は市場シェアの拡大に AI を活用しています。医薬品発見のための AI は、機械を使用して人間の知能をシミュレートし、医薬品開発プロセスにおける複雑な課題を解決する技術です。

Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market

Asia-Pacific Artificial Intelligence (AI) in Drug Discovery Market

臨床試験プロセスに AI ソリューションを導入すると、起こり得る障害が排除され、臨床試験のサイクル時間が短縮され、臨床試験プロセスの生産性と精度が向上します。医薬品の発見における AI の技術的進歩と医薬品の発見プロセスにかかる総時間の短縮は、予測期間中の市場の成長を促進する他の要因です。ただし、利用可能なデータの品質が低く一貫性がない場合は、市場の成長が妨げられます。また、テクノロジーに関連するコストの高さと技術的な制限により、市場の成長が抑制されます。

データブリッジ市場調査は、アジア太平洋地域の創薬における人工知能(AI)市場は、予測期間中に50.9%のCAGRで成長し、2029年までに34億2,404万米ドルに達すると予測しています。創薬市場でのAIの利用を商業化するための技術進歩が急速に進んでいるため、ソフトウェアは市場で最大の技術セグメントを占めています。この市場レポートでは、価格分析、特許分析、技術進歩についても詳細に取り上げています。

レポートメトリック

詳細

予測期間

2022年から2029年

基準年

2021

歴史的な年

2020 (2019~2014 にカスタマイズ可能)

定量単位

売上高は百万米ドル、価格は米ドル

対象セグメント

アプリケーション別(新薬候補、薬物の最適化と転用、前臨床試験と承認、薬物モニタリング、新しい疾患関連ターゲットと経路の発見、疾患メカニズムの理解、情報の集約と統合、仮説の形成と適格性、新規薬物設計、古い薬物の薬物ターゲットの発見など)、テクノロジー別(機械学習、ディープラーニング、 自然言語処理 その他)、医薬品タイプ(低分子および高分子)、提供内容(ソフトウェアおよびサービス)、適応症(免疫腫瘍学、神経変性疾患、心血管疾患、代謝性疾患など)、最終用途(開発業務受託機関(CRO)、製薬・バイオテクノロジー企業、研究センターおよび学術機関など)

対象国

中国、日本、インド、韓国、シンガポール、タイ、マレーシア、オーストラリア、ニュージーランド、フィリピン、インドネシア、その他のアジア太平洋諸国

対象となる市場プレーヤー

市場で活動している主要企業としては、NVIDIA Corporation、IBM Corp.、Atomwise Inc.、Microsoft、Benevolent AI、Aria Pharmaceuticals, Inc.、DEEP GENOMICS、Exscientia、Cloud、Insilico Medicine、Cyclica、NuMedii, Inc.、Envisagenics、Owkin Inc.、BERG LLC、Schrödinger, Inc.、XtalPi Inc.、BIOAGE Inc.などが挙げられます。

アジア太平洋地域の創薬市場における人工知能(AI)の定義

AI はここ数年、医療技術従事者の注目を集めており、いくつかの企業や大手研究機関がこれらの技術を臨床で使用できるように完成させようと取り組んできました。AI (ディープラーニング (DL)、機械学習 (ML)、人工ニューラルネットワーク (ANN) とも呼ばれる) が臨床医をどのように支援できるかを示す最初の商用化デモンストレーションが現在利用可能です。これらのシステムは、臨床医のワークフローにパラダイムシフトをもたらし、生産性を向上させると同時に、治療と患者のスループットを向上させる可能性があります。創薬のための AI は、機械を使用して人間の知能をシミュレートし、医薬品開発手順における複雑な課題を解決する技術です。臨床試験プロセスに AI ソリューションを採用すると、起こり得る障害が排除され、臨床試験のサイクルタイムが短縮され、臨床試験プロセスの生産性と精度が向上します。そのため、創薬プロセスにおけるこれらの高度な AI ソリューションの採用は、ライフサイエンス業界の関係者の間で人気が高まっています。製薬分野では、新しい化合物の発見、治療ターゲットの特定、カスタマイズされた医薬品の開発に役立ちます。創薬に使用される AI プラットフォームは、さまざまな慢性疾患を治療し、その重症度を最小限に抑える医薬品の発見に関する洞察を得るための実現可能な選択肢となる可能性があります。

アジア太平洋地域の創薬市場における人工知能(AI)の動向

このセクションでは、市場の推進要因、利点、機会、制約、課題について理解します。これらについては、以下で詳しく説明します。                          

運転手

  • 慢性疾患の発症率の上昇により、創薬におけるAIの必要性が高まっている

慢性疾患の発症率は世界中で急速に増加しています。米国疾病管理予防センター (CDC) によると、米国の成人 10 人中 6 人が慢性疾患を患っています。さらに、CDC は、心臓病や糖尿病などの慢性疾患が米国における主な死亡原因であることも強調しています。このような統計は、慢性疾患の蔓延が拡大していることと、これらの疾患による死亡率を下げる必要性を明らかにしています。

創薬に使用される AI プラットフォームは、さまざまな慢性疾患を治療し、その重症度を最小限に抑える医薬品の発見に関する洞察を得るための実現可能なオプションであることが証明されています。したがって、これらの要因は、予測期間中に市場の成長の原動力として機能することが期待されています。

  • 戦略的コラボレーション、パートナーシップ、製品の発売

AI は、R&D のタイムラインを急速に加速し、医薬品開発をより安価かつ迅速にし、承認の可能性を高めることで、医薬品の発見を変革する可能性があります。AI は医薬品の再利用研究の有効性を高めることもできます。

業界間の提携や協力の増加が市場を牽引しています。医薬品の発見と開発における AI の重要性の高まり、医薬品研究分野における AI 技術を含む研究開発活動への資金の急増が、世界市場の成長を牽引すると予測されています。したがって、業界間の協力やパートナーシップの増加が市場を牽引しています。

拘束

  • 技術に関連する高コストと技術的制限

現在のヘルスケア分野は、医薬品や治療法のコスト増加など、いくつかの複雑な課題に直面しており、社会はこの分野で具体的かつ大幅な変化を必要としています。 AI の成功は、大量のデータが利用可能かどうかにかかっています。これらのデータは、システムに提供されるその後のトレーニングに使用されるためです。 さまざまなデータベースプロバイダーのデータにアクセスすると、企業に追加コストが発生する可能性があります。 臨床試験は、特定の病状に対する医薬品の安全性と有効性を人間で確立することを目的としており、6〜7年の歳月と多額の資金投資が必要です。 ただし、これらの試験に参加する分子の10分の1だけが承認に成功し、業界にとって大きな損失となります。 これらの失敗は、不適切な患者選択、技術要件の不足、およびインフラストラクチャの貧弱さが原因である可能性があります。 したがって、テクノロジーのコスト増加は、市場の成長の抑制として機能しています。

機会

  • 研究開発への投資の増加

研究開発活動の増加とクラウドベースのサービスおよびアプリケーションの採用の増加は、市場の成長に有益な機会をもたらすでしょう。

バイオ医薬品におけるAI業界は、長い低迷期を経て成長を続けています。これは、2021年と前年に比べて継続的な投資の流れと製薬企業とAI企業とのコラボレーション数の増加に反映されています。バイオ医薬品業界の成長は、大手製薬企業がAI関連投資に積極的に取り組んでいることに大きく影響されています。バイオ医薬品におけるAI分野の科学出版物の数や、製薬企業とAI専門ベンダーとの研究コラボレーションは急速に増加していますが、一部の製薬企業は依然としてAIアプリケーションに批判的です。製薬業界とヘルスケア業界におけるMLとAIのアプリケーションは、ヘルスケアにおけるデータ駆動型創薬という新しい学際分野の形成につながります。したがって、研究開発活動への投資の増加は、市場成長の機会として機能しています。

チャレンジ

  • 熟練した専門家の不足

熟練した専門家の不足は、市場の成長を妨げると予想されています。従業員は、複雑な AI マシンで効率的に作業して、医薬品に望ましい結果を得るために、再トレーニングを受けるか、新しいスキルセットを習得する必要があります。製薬業界で AI が本格的に導入されるのを妨げるこの課題には、AI ベースのプラットフォームを操作する熟練した人員の不足、小規模組織の予算の制限、人間を置き換えることによる失業への懸念、AI によって生成されたデータに対する懐疑心、ブラックボックス現象 (つまり、AI プラットフォームによって結論がどのように導かれるか) などがあります。スキル不足は、AI による医薬品の発見の大きな障害となり、企業が医薬品の発見に AI ベースのマシンを採用することを妨げています。

スキルの要求が高すぎるため、スキルを指定した専門家の維持と管理が課題となっています。さらに、技術の進歩も熟練した専門家の需要増加につながるもう 1 つの側面です。AI ベースの技術の専門家の教育が緊急に必要とされています。訓練を受けた経験豊富な専門家の不足とスキル ギャップが続くと、雇用の見通しと質の高い仕事へのアクセスが制限されます。したがって、適切なスキルを備えた専門家の可用性が市場の成長を妨げていることは明らかです。

役職-COVID-19がアジア太平洋地域の創薬市場における人工知能(AI)に与える影響

COVID-19の流行は、COVID-19の治療に使用される既存の医薬品の特定とスクリーニングのためにさまざまな組織でAIが広く使用されているため、創薬業界におけるAIの拡大に好影響を与えました。AIは、SARS-CoV、HIV、SARS-CoV-2、インフルエンザウイルスなどの予防のための活性化学物質の検出に役立ちます。パンデミックの間、世界中の経済は、作成に何年もかかり、同様に高価な従来のワクチン検出プロセスではなく、AIベースの薬剤発見に依存し、市場の成長に貢献しました。

メーカー各社は、COVID-19後の回復に向けてさまざまな戦略的決定を下しています。各社は、ワイヤレスマイクに関わる技術を向上させるために、複数の研究開発活動を行っています。これにより、各社は高度で正確なAIソフトウェアを市場に投入することになります。

最近の動向

  • 2022 年 3 月、NVIDIA Corporation はリアルタイム AI アプリケーションの開発と展開のために Clara Holoscan MGX をリリースしました。Clara Holoscan MGX は Clara Holoscan プラットフォームを拡張し、オールインワンの医療グレードのリファレンス アーキテクチャと長期的なソフトウェア サポートを提供し、医療機器業界のイノベーションを加速します。これにより、同社は手術、診断、創薬などの医療分野で AI パフォーマンスを向上させることができます。
  • 2022年5月、臨床段階のAIを活用した創薬のリーディングカンパニーであるBenevolent AIは、AstraZenecaが特発性肺線維症(IPF)の新たなターゲットを医薬品開発ポートフォリオに追加選択し、Benevolent AIにマイルストーンペイメントを支払ったことを発表しました。これは、IPFと慢性腎臓病の2つの疾患領域にわたってBenevolentプラットフォームを使用して特定され、その後AstraZenecaによって検証され、ポートフォリオへの参入が選択された、コラボレーションによる3番目の新たなターゲットです。これは、2022年1月に締結された、全身性エリテマトーデスと心不全の2つの新しい疾患領域を含むAstraZenecaとのコラボレーションの最近の拡張に基づいています。これにより、同社はコラボレーションを強化することができました。

アジア太平洋地域の創薬市場における人工知能(AI)の展望

アジア太平洋地域の創薬市場における人工知能 (AI) は、アプリケーション、テクノロジー、薬剤の種類、提供、適応症、最終用途に分類されています。セグメント間の成長は、ニッチな成長分野と市場にアプローチするための戦略を分析し、コアアプリケーション領域とターゲット市場の違いを決定するのに役立ちます。

応用

  • 新薬候補
  • 医薬品の最適化と再利用 前臨床試験と承認
  • 薬物モニタリング
  • 新たな疾患に関連する標的と経路の発見
  • 病気のメカニズムを理解する
  • 情報の集約と統合
  • 仮説の形成と検証
  • De Novo 医薬品設計
  • 古い薬の薬物ターゲットを見つける
  • その他

アプリケーションに基づいて、市場は、新薬候補、薬物の最適化と再利用、前臨床試験と承認、薬物モニタリング、新しい疾患関連ターゲットと経路の発見、疾患メカニズムの理解、情報の集約と統合、仮説の形成と認定、新規薬物設計、古い薬物の薬物ターゲットの発見、その他に分類されます。

テクノロジー

  • 機械学習(ML)
  • ディープラーニング(DL)
  • 自然言語処理 (NLP)
  • その他

テクノロジーに基づいて、市場は機械学習 (ML)、ディープラーニング (DL)、自然言語処理 (NLP) などに分類されます。

薬剤の種類

  • 小分子
  • 巨大分子

薬物の種類に基づいて、市場は低分子と高分子に分類されます。

募集

  • ソフトウェア
  • サービス

提供内容に基づいて、市場はソフトウェアとサービスに分類されます。

表示

  • 免疫腫瘍学
  • 神経変性疾患
  • 心血管疾患
  • 代謝性疾患
  • その他

適応症に基づいて、市場は免疫腫瘍学、神経変性疾患、心血管疾患、代謝性疾患、その他に分類されます。

最終用途

  • 製薬・バイオテクノロジー企業
  • 契約研究機関(CRO)
  • 研究センターおよび学術機関
  • その他

Artificial Intelligence (AI) in Drug Discovery Market

最終用途に基づいて、市場は製薬およびバイオテクノロジー企業、契約研究機関(CRO)、研究センターおよび学術機関、その他に分類されます。

アジア太平洋地域の創薬市場における人工知能(AI)の地域分析/洞察

アジア太平洋地域の創薬市場における人工知能 (AI) が分析され、アプリケーション、テクノロジー、薬剤の種類、提供、適応症、最終用途別に市場規模の情報が提供されます。

この市場レポートで取り上げられている国は、中国、日本、インド、韓国、シンガポール、タイ、マレーシア、オーストラリアとニュージーランド、フィリピン、インドネシア、その他のアジア太平洋諸国です。

  • 2022年には、患者数の増加と人々の意識の高まりにより感染症診断キットの需要が高まり、アジア太平洋地域が3番目に優勢な地域となります。中国は、創薬のためのAIの技術的進歩の増加により成長すると予想されています。

レポートの国別セクションでは、市場の現在および将来の傾向に影響を与える国内市場における個別の市場影響要因と規制の変更も提供しています。新規販売、交換販売、国の人口統計、規制行為、輸出入関税などのデータ ポイントは、各国の市場シナリオを予測するために使用される主要な指標の一部です。また、国別データの予測分析を提供する際には、アジア太平洋ブランドの存在と可用性、地元および国内ブランドとの競争が激しいか少ないために直面​​する課題、販売チャネルの影響も考慮されます。

創薬市場シェア分析における競争環境とアジア太平洋地域の人工知能(AI)

アジア太平洋地域の創薬における人工知能 (AI) 市場の競争状況では、競合他社ごとに詳細が提供されます。詳細には、会社概要、会社の財務状況、収益、市場の可能性、研究開発への投資、新しい市場への取り組み、生産拠点と施設、会社の強みと弱み、製品の発売、製品試験パイプライン、製品の承認、特許、製品の幅と幅、アプリケーションの優位性、技術ライフライン曲線が含まれます。提供されている上記のデータ ポイントは、アジア太平洋地域の創薬における人工知能 (AI) 市場への会社の重点にのみ関連しています。

この市場で活動している主要企業としては、NVIDIA Corporation、IBM Corp.、Atomwise Inc.、Microsoft、Benevolent AI、Aria Pharmaceuticals, Inc.、DEEP GENOMICS、Exscientia、Cloud、Insilico Medicine、Cyclica、NuMedii, Inc.、Envisagenics、Owkin Inc.、BERG LLC、Schrödinger, Inc.、XtalPi Inc.、BIOAGE Inc.などが挙げられます。


SKU-

表 1 アジア太平洋地域の創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

表2 アジア太平洋地域における創薬市場における人工知能(AI)ソフトウェア、地域別、2020年~2029年(百万米ドル)

表3 アジア太平洋地域の創薬市場における人工知能(AI)ソフトウェア、タイプ別、2020年~2029年(百万米ドル)

表4 アジア太平洋地域における創薬市場における人工知能(AI)サービス、地域別、2020年~2029年(百万米ドル)

表5 アジア太平洋地域の創薬市場における人工知能(AI)、技術別、2020年~2029年(百万米ドル)

表6 アジア太平洋地域における機械学習(ML)と人工知能(AI)による創薬市場、地域別、2020年~2029年(百万米ドル)

表 7 アジア太平洋地域における創薬市場における機械学習 (ML) と人工知能 (AI)、技術別、2020-2029 年 (百万米ドル)

表8 アジア太平洋地域における創薬市場における人工知能(AI)のディープラーニング、地域別、2020年~2029年(百万米ドル)

表9 アジア太平洋地域における自然言語処理(NLP)と人工知能(AI)による医薬品発見市場、地域別、2020年~2029年(百万米ドル)

表10 アジア太平洋地域における創薬市場における人工知能(AI)のその他、地域別、2020年~2029年(百万米ドル)

表11 アジア太平洋地域の医薬品発見市場における人工知能(AI)、医薬品タイプ別、2020年~2029年(百万米ドル)

表12 アジア太平洋地域における創薬市場における人工知能(AI)の小分子、地域別、2020年~2029年(百万米ドル)

表13 アジア太平洋地域における人工知能(AI)による創薬市場における巨大分子、地域別、2020年~2029年(百万米ドル)

表14 アジア太平洋地域の創薬市場における人工知能(AI)、アプリケーション別、2020年~2029年(百万米ドル)

表15 アジア太平洋地域における人工知能(AI)創薬市場における新薬候補、地域別、2020年~2029年(百万米ドル)

表16 アジア太平洋地域における人工知能(AI)創薬市場における新薬候補、用途別、2020年~2029年(百万米ドル)

表17 アジア太平洋地域の医薬品最適化および転用前臨床試験および医薬品発見市場における人工知能(AI)の承認、地域別、2020年~2029年(百万米ドル)

表18 アジア太平洋地域における医薬品モニタリングと人工知能(AI)による医薬品発見市場、地域別、2020年~2029年(百万米ドル)

表19 アジア太平洋地域における創薬市場における人工知能(AI)の情報集約と統合、地域別、2020年~2029年(百万米ドル)

表20 アジア太平洋地域における人工知能(AI)を活用した創薬市場における新規医薬品設計、地域別、2020年~2029年(百万米ドル)

表21 アジア太平洋地域における人工知能(AI)による新薬発見市場における旧薬の創薬ターゲットの発見、地域別、2020年~2029年(百万米ドル)

表22 アジア太平洋地域における創薬市場における人工知能(AI)の仮説形成と検証、地域別、2020年~2029年(百万米ドル)

表23 アジア太平洋地域における人工知能(AI)による創薬市場における疾患メカニズムの理解、地域別、2020年~2029年(百万米ドル)

表24 アジア太平洋地域における創薬市場における人工知能(AI)の新たな疾患関連ターゲットと経路の発見、地域別、2020年~2029年(百万米ドル)

表25 アジア太平洋地域における創薬市場における人工知能(AI)のその他、地域別、2020年~2029年(百万米ドル)

表26 アジア太平洋地域の創薬市場における人工知能(AI)、適応症別、2020年~2029年(百万米ドル)

表27 アジア太平洋地域における免疫腫瘍学の創薬市場における人工知能(AI) 地域別、2020年~2029年(百万米ドル)

表28 アジア太平洋地域における免疫腫瘍学の創薬市場における人工知能(AI)の適応症別、2020年~2029年(百万米ドル)

表29 アジア太平洋地域における神経変性疾患の創薬市場における人工知能(AI)の地域別、2020年~2029年(百万米ドル)

表30 アジア太平洋地域における人工知能(AI)創薬市場における心血管疾患、地域別、2020年~2029年(百万米ドル)

表31 アジア太平洋地域における代謝性疾患の創薬市場における人工知能(AI)地域別、2020年~2029年(百万米ドル)

表32 アジア太平洋地域における創薬市場における人工知能(AI)のその他、地域別、2020年~2029年(百万米ドル)

表 33 グローバル アジア太平洋地域 創薬市場における人工知能 (AI)、最終用途別、2020-2029 年 (百万米ドル)

表34 アジア太平洋地域における創薬市場における人工知能(AI)の契約研究機関、地域別、2020年~2029年(百万米ドル)

表35 アジア太平洋地域の医薬品・バイオテクノロジー企業による創薬市場における人工知能(AI)の地域別、2020年~2029年(百万米ドル)

表36 アジア太平洋地域における創薬市場における人工知能(AI)研究センターおよび学術機関、地域別、2020年~2029年(百万米ドル)

表37 アジア太平洋地域における創薬市場における人工知能(AI)のその他、地域別、2020年~2029年(百万米ドル)

表38 アジア太平洋地域の創薬市場における人工知能(AI)、国別、2020年~2029年(百万米ドル)

表 39 アジア太平洋地域の創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

表40 アジア太平洋地域の創薬市場における人工知能(AI)ソフトウェア、タイプ別、2020年~2029年(百万米ドル)

表41 アジア太平洋地域の創薬市場における人工知能(AI)、技術別、2020年~2029年(百万米ドル)

表42 アジア太平洋地域における創薬市場における人工知能(AI)の機械学習(ML)、技術別、2020年~2029年(百万米ドル)

表43 アジア太平洋地域の医薬品発見市場における人工知能(AI)、医薬品タイプ別、2020年~2029年(百万米ドル)

表44 アジア太平洋地域の創薬市場における人工知能(AI)、用途別、2020年~2029年(百万米ドル)

表45 アジア太平洋地域における人工知能(AI)創薬市場における新薬候補、用途別、2020年~2029年(百万米ドル)

表46 アジア太平洋地域の創薬市場における人工知能(AI)、適応症別、2020年~2029年(百万米ドル)

表47 アジア太平洋地域における免疫腫瘍学の創薬市場における人工知能(AI)の適応症別、2020年~2029年(百万米ドル)

表48 アジア太平洋地域の創薬市場における人工知能(AI)、最終用途別、2020年~2029年(百万米ドル)

表49 中国創薬市場における人工知能(AI)、提供分野別、2020年~2029年(百万米ドル)

表50 中国創薬市場における人工知能(AI)ソフトウェア、タイプ別、2020年~2029年(百万米ドル)

表51 中国の創薬市場における人工知能(AI)、技術別、2020年~2029年(百万米ドル)

表52 中国における創薬市場における人工知能(AI)における機械学習(ML)、技術別、2020年~2029年(百万米ドル)

表53 中国の医薬品発見市場における人工知能(AI)、医薬品タイプ別、2020年~2029年(百万米ドル)

表54 中国創薬市場における人工知能(AI)、用途別、2020年~2029年(百万米ドル)

表55 中国創薬市場における人工知能(AI)の新薬候補、用途別、2020年~2029年(百万米ドル)

表56 中国の創薬市場における人工知能(AI)、適応症別、2020年~2029年(百万米ドル)

表57 中国免疫腫瘍学の創薬市場における人工知能(AI)の適応症別、2020年~2029年(百万米ドル)

表58 中国の創薬市場における人工知能(AI)、最終用途別、2020年~2029年(百万米ドル)

表59 日本創薬市場における人工知能(AI)、提供分野別、2020年~2029年(百万米ドル)

表60 日本における創薬市場における人工知能(AI)ソフトウェア、タイプ別、2020年~2029年(百万米ドル)

表61 日本創薬市場における人工知能(AI)、技術別、2020年~2029年(百万米ドル)

表62 日本における機械学習(ML)と人工知能(AI)の創薬市場、技術別、2020年~2029年(百万米ドル)

表63 日本における医薬品発見市場における人工知能(AI)、医薬品タイプ別、2020年~2029年(百万米ドル)

表64 日本における創薬市場における人工知能(AI)、用途別、2020年~2029年(百万米ドル)

表65 日本における人工知能(AI)創薬市場における新薬候補、用途別、2020年~2029年(百万米ドル)

表66 日本における創薬市場における人工知能(AI)、適応症別、2020年~2029年(百万米ドル)

表67 日本における免疫腫瘍学の創薬市場における人工知能(AI)の適応症別、2020年~2029年(百万米ドル)

表68 日本における創薬市場における人工知能(AI)、最終用途別、2020年~2029年(百万米ドル)

表69 韓国の創薬市場における人工知能(AI)、提供分野別、2020年~2029年(百万米ドル)

表 70 韓国の創薬市場における人工知能 (AI) ソフトウェア、タイプ別、2020-2029 年 (百万米ドル)

表 71 韓国の創薬市場における人工知能 (AI)、技術別、2020-2029 年 (百万米ドル)

表 72 韓国の創薬市場における人工知能 (AI) における機械学習 (ML)、技術別、2020-2029 年 (百万米ドル)

表 73 韓国の医薬品発見市場における人工知能 (AI)、医薬品タイプ別、2020-2029 年 (百万米ドル)

表 74 韓国の創薬市場における人工知能 (AI)、用途別、2020-2029 年 (百万米ドル)

表 75 韓国の創薬市場における人工知能 (AI) の新薬候補、用途別、2020-2029 年 (百万米ドル)

表 76 韓国の創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 77 韓国の免疫腫瘍学における人工知能 (AI) 創薬市場、適応症別、2020-2029 年 (百万米ドル)

表 78 韓国の創薬市場における人工知能 (AI)、最終用途別、2020-2029 年 (百万米ドル)

表 79 インドの創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

表80 インド 創薬市場における人工知能(AI)ソフトウェア、タイプ別、2020年~2029年(百万米ドル)

表81 インドの創薬市場における人工知能(AI)、技術別、2020年~2029年(百万米ドル)

表 82 インド 機械学習 (ML) と人工知能 (AI) による創薬市場、技術別、2020-2029 年 (百万米ドル)

表83 インドの医薬品発見市場における人工知能(AI)、医薬品タイプ別、2020年~2029年(百万米ドル)

表84 インドにおける創薬市場における人工知能(AI)、用途別、2020年~2029年(百万米ドル)

表 85 インド 創薬市場における人工知能 (AI) の新薬候補、用途別、2020-2029 年 (百万米ドル)

表 86 インドの創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 87 インドの免疫腫瘍学における人工知能 (AI) 創薬市場、適応症別、2020-2029 年 (百万米ドル)

表 88 インドの創薬市場における人工知能 (AI)、最終用途別、2020-2029 年 (百万米ドル)

表 89 オーストラリアとニュージーランドの創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

表90 オーストラリアとニュージーランドの創薬市場における人工知能(AI)ソフトウェア、タイプ別、2020年~2029年(百万米ドル)

表91 オーストラリアとニュージーランドの創薬市場における人工知能(AI)、技術別、2020年~2029年(百万米ドル)

表92 オーストラリアとニュージーランドの創薬市場における人工知能(AI)における機械学習(ML)、技術別、2020年~2029年(百万米ドル)

表93 オーストラリアとニュージーランドの医薬品発見市場における人工知能(AI)、医薬品タイプ別、2020年~2029年(百万米ドル)

表94 オーストラリアとニュージーランドの創薬市場における人工知能(AI)、用途別、2020年~2029年(百万米ドル)

表95 オーストラリアとニュージーランドの創薬市場における人工知能(AI)の新薬候補、用途別、2020年~2029年(百万米ドル)

表96 オーストラリアとニュージーランドの創薬市場における人工知能(AI)、適応症別、2020年~2029年(百万米ドル)

表97 オーストラリアとニュージーランドの創薬市場における人工知能(AI)の免疫腫瘍学、適応症別、2020年~2029年(百万米ドル)

表98 オーストラリアとニュージーランドの創薬市場における人工知能(AI)、最終用途別、2020年~2029年(百万米ドル)

表99 シンガポールの創薬市場における人工知能(AI)、提供別、2020年~2029年(百万米ドル)

表 100 シンガポールの創薬市場における人工知能 (AI) ソフトウェア、タイプ別、2020-2029 年 (百万米ドル)

表 101 シンガポールの創薬市場における人工知能 (AI)、技術別、2020-2029 年 (百万米ドル)

表 102 シンガポールの創薬市場における人工知能 (AI) における機械学習 (ML)、技術別、2020-2029 年 (百万米ドル)

表 103 シンガポールの医薬品発見市場における人工知能 (AI)、医薬品タイプ別、2020-2029 年 (百万米ドル)

表 104 シンガポールの創薬市場における人工知能 (AI)、用途別、2020-2029 年 (百万米ドル)

表 105 シンガポールの創薬市場における人工知能 (AI) の新薬候補、用途別、2020-2029 年 (百万米ドル)

表 106 シンガポールの創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 107 シンガポールの免疫腫瘍学における人工知能 (AI) 創薬市場、適応症別、2020-2029 年 (百万米ドル)

表 108 シンガポール創薬市場における人工知能 (AI)、最終用途別、2020-2029 年 (百万米ドル)

表 109 タイの創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

表 110 タイの創薬市場における人工知能 (AI) ソフトウェア、タイプ別、2020-2029 年 (百万米ドル)

表 111 タイの創薬市場における人工知能 (AI)、技術別、2020-2029 年 (百万米ドル)

表 112 タイの創薬市場における人工知能 (AI) における機械学習 (ML)、技術別、2020-2029 年 (百万米ドル)

表 113 タイの医薬品発見市場における人工知能 (AI)、医薬品タイプ別、2020-2029 年 (百万米ドル)

表 114 タイの創薬市場における人工知能 (AI)、用途別、2020-2029 年 (百万米ドル)

表 115 タイの創薬市場における人工知能 (AI) の新薬候補、用途別、2020-2029 年 (百万米ドル)

表 116 タイの創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 117 タイの免疫腫瘍学における人工知能 (AI) 創薬市場、適応症別、2020-2029 年 (百万米ドル)

表 118 タイの創薬市場における人工知能 (AI)、最終用途別、2020-2029 年 (百万米ドル)

表 119 マレーシアの創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

表 120 マレーシアの創薬市場における人工知能 (AI) ソフトウェア、タイプ別、2020-2029 年 (百万米ドル)

表 121 マレーシアの創薬市場における人工知能 (AI)、技術別、2020-2029 年 (百万米ドル)

表 122 マレーシアの創薬市場における人工知能 (AI) における機械学習 (ML)、技術別、2020-2029 年 (百万米ドル)

表 123 マレーシアの医薬品発見市場における人工知能 (AI)、医薬品タイプ別、2020-2029 年 (百万米ドル)

表 124 マレーシアの創薬市場における人工知能 (AI)、用途別、2020-2029 年 (百万米ドル)

表 125 マレーシアの創薬市場における人工知能 (AI) の新薬候補、用途別、2020-2029 年 (百万米ドル)

表 126 マレーシアの創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 127 マレーシアの免疫腫瘍学における人工知能 (AI) 創薬市場、適応症別、2020-2029 年 (百万米ドル)

表 128 マレーシアの創薬市場における人工知能 (AI)、最終用途別、2020-2029 年 (百万米ドル)

表 129 インドネシアの創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

表 130 インドネシアの創薬市場における人工知能 (AI) ソフトウェア、タイプ別、2020-2029 年 (百万米ドル)

表 131 インドネシアの創薬市場における人工知能 (AI)、技術別、2020-2029 年 (百万米ドル)

表 132 インドネシアの創薬市場における人工知能 (AI) における機械学習 (ML)、技術別、2020-2029 年 (百万米ドル)

表 133 インドネシアの医薬品発見市場における人工知能 (AI)、医薬品タイプ別、2020-2029 年 (百万米ドル)

表 134 インドネシアの創薬市場における人工知能 (AI)、用途別、2020-2029 年 (百万米ドル)

表 135 インドネシアの創薬市場における人工知能 (AI) の新薬候補、用途別、2020-2029 年 (百万米ドル)

表 136 インドネシアの創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 137 インドネシアの免疫腫瘍学の創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 138 インドネシアの創薬市場における人工知能 (AI)、最終用途別、2020-2029 年 (百万米ドル)

表 139 フィリピンの創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

表 140 フィリピンの創薬市場における人工知能 (AI) ソフトウェア、タイプ別、2020-2029 年 (百万米ドル)

表 141 フィリピンの創薬市場における人工知能 (AI)、技術別、2020-2029 年 (百万米ドル)

表 142 フィリピンの創薬市場における人工知能 (AI) における機械学習 (ML)、技術別、2020-2029 年 (百万米ドル)

表 143 フィリピンの医薬品発見市場における人工知能 (AI)、医薬品タイプ別、2020-2029 年 (百万米ドル)

表 144 フィリピンの創薬市場における人工知能 (AI)、用途別、2020-2029 年 (百万米ドル)

表 145 フィリピンの創薬市場における人工知能 (AI) の新薬候補、用途別、2020-2029 年 (百万米ドル)

表 146 フィリピンの創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 147 フィリピンの免疫腫瘍学の創薬市場における人工知能 (AI)、適応症別、2020-2029 年 (百万米ドル)

表 148 フィリピンの創薬市場における人工知能 (AI)、最終用途別、2020-2029 年 (百万米ドル)

表 149 アジア太平洋地域のその他の地域における創薬市場における人工知能 (AI)、提供別、2020-2029 年 (百万米ドル)

インフォグラフィックについては以下のフォームにご記入ください

「送信」ボタンをクリックすると、データブリッジ市場調査に同意したことになります。 プライバシーポリシー そして 利用規約

研究方法:

データ収集と基準年分析は、大規模なサンプル サイズのデータ​​収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。これには、過去に取得したすべてのデータを事前に調査および計画することが含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計および一貫性のあるモデルを使用して分析および推定されます。また、市場シェア分析と主要な傾向分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。

DBMR リサーチ チームが使用する主要なリサーチ手法は、データ マイニング、データ変数の市場への影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。リサーチ手法について詳しくは、お問い合わせフォームから当社の業界の専門家にご相談ください。

研究方法については下記のフォームにご記入ください

「送信」ボタンをクリックすると、データブリッジ市場調査に同意したことになります。 プライバシーポリシー そして 利用規約

カスタマイズ可能:

Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合ったデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場の理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、再開発市場および製品ベースの分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社を必要なだけ追加できます。必要な形式とデータ スタイルでデータを追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

カスタマイズ可能な内容については、以下のフォームにご記入ください。

「送信」ボタンをクリックすると、データブリッジ市場調査に同意したことになります。 プライバシーポリシー そして 利用規約

よくある質問

アジア太平洋地域の創薬における人工知能(AI)市場規模は、2029年までに34億2,404万米ドルに達すると予想されます。
アジア太平洋地域の創薬市場における人工知能(AI)の成長率は、2029年までに50.9%になります。
慢性疾患の発生率の上昇により、創薬における AI の必要性が高まっています。戦略的コラボレーション、パートナーシップ、製品の発売は、アジア太平洋地域の創薬における人工知能 (AI) 市場の成長を牽引しています。
アプリケーション、テクノロジー、薬物の種類、提供、適応症、および最終用途は、アジア太平洋地域の創薬市場における人工知能 (AI) の調査の基礎となる要素です。
アジア太平洋地域の創薬市場における人工知能(AI)の主要企業は、NVIDIA Corporation、IBM Corp.、Atomwise Inc.、Microsoft、Benevolent AI、Aria Pharmaceuticals, Inc.、DEEP GENOMICS、Exscientia、Cloud、Insilico Medicine、Cyclica、NuMedii, Inc.、Envisagenics、Owkin Inc.、BERG LLC、Schrödinger, Inc.、XtalPi Inc.、BIOAGE Incです。
無料サンプルレポート

ライセンスの種類を選択

  • 4200.00
  • 3500.00
  • 2000.00
  • 5500.00
  • 7500.00

当社を選ぶ理由

業界範囲

DBMR は世界中のさまざまな業界で活動しており、さまざまな業種にわたる知識を備え、クライアントに自社の業界だけでなく、他の業界がクライアントのエコシステムに与える影響についての洞察を提供しています。

地域別カバレッジ

Data Bridge の調査範囲は、先進国や新興国に限定されません。当社は、他の市場調査会社やビジネスコンサルティング会社が調査を実施したことのない最も広範な国々をカバーし、まだ知られていない分野でクライアントの成長機会を創出しています。

テクノロジーのカバレッジ

今日の世界では、テクノロジーが市場心理を左右します。そのため、当社のビジョンは、クライアントに、開発されたテクノロジーだけでなく、製品ライフサイクル全体にわたる今後の破壊的なテクノロジーの変化に関する洞察を提供し、市場での予期せぬ機会を提供して、業界に混乱をもたらすことです。これがイノベーションにつながり、クライアントが勝者となることにつながります。

目標指向のソリューション

DBMR の目標は、当社のソリューションを通じてクライアントの目標達成を支援することです。そのため、クライアントのニーズに最も適したソリューションを形成的に作成し、クライアントが壮大な戦略を推進するための時間と労力を節約します。

比類のないアナリストサポート

弊社のアナリストは、お客様の成功に誇りを持っています。他社とは異なり、弊社は、24 時間体制のアナリスト サポートでお客様の目標達成に協力し、適切なニーズを特定してサービスを通じてイノベーションを促進することを信条としています。

Banner

お客様の声