欧州ディープラーニングニューラルネットワーク(DNN)市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%

![]() |
2025 –2032 |
![]() |
USD 11.50 Billion |
![]() |
USD 37.96 Billion |
![]() |
|
![]() |
|
欧州ディープラーニングニューラルネットワーク(DNN)市場:製品タイプ(ソフトウェアプラットフォーム、ハードウェアアクセラレータ、サービス)、テクノロジー(CNN、RNN、GAN、トランスフォーマー、その他)、アプリケーション(医療診断、自律走行車、金融サービス、小売、製造、その他)、導入(クラウドベース、オンプレミス)、エンドユーザー(企業、医療提供者、自動車メーカー、金融機関、政府機関、その他)別 – 2032年までの業界動向と予測
ディープラーニングニューラルネットワーク(DNN)市場規模
- ヨーロッパのディープラーニングニューラルネットワーク(DNN)市場規模は2024年に115億ドルと評価され、予測期間中に16.1%のCAGRで成長し、2032年には379億6000万ドル に達すると予想されています 。
- この大幅な成長は、主に人工知能(AI)技術の普及、機械学習インフラへの投資の増加、そして医療、自動車、金融、小売などの業界における高度なデータ分析への需要の高まりによって牽引されています。ビッグデータの急増と計算能力の進歩が相まって、市場拡大をさらに加速させています。
- 大規模な研究開発(R&D)投資、AI導入を促進する政府の取り組み、そして大手テクノロジー企業の強力なプレゼンスに支えられたこの地域の技術革新におけるリーダーシップは、市場の上昇傾向に大きく貢献しています。さらに、自律システム、スマート製造、パーソナライズされた消費者サービスにおけるDNNの統合拡大は、欧州全域でディープラーニングソリューションへの大きな需要を促進しています。
ディープラーニングニューラルネットワーク(DNN)市場分析
- ディープラーニング・ニューラルネットワーク(DNN)は、人間の脳のプロセスを模倣するように設計された高度なAIアルゴリズムであり、機械が膨大なデータセットを処理し、パターンを認識し、データに基づいた意思決定を行うことを可能にします。ソフトウェアプラットフォーム、GPUやTPUなどのハードウェアアクセラレータ、プロフェッショナルサービスを含むこれらのシステムは、医療診断、自動運転車、金融モデリング、小売パーソナライゼーション、製造自動化などのアプリケーションにとって不可欠です。
- AIイノベーションにおけるヨーロッパの優位性が市場を大きく牽引しており、2023年には米国を筆頭に世界のAI研究開発費の40%以上をヨーロッパが占めると予測されています。自動運転車の急速な普及は、2027年までにドイツの道路を120万台以上の自動運転車が走ると予測されており、リアルタイム画像およびセンサーデータ処理におけるDNNの需要を促進しています。
- トランスフォーマーベースモデルや生成AIといった技術の進歩は、DNNの機能を強化し、自然言語処理(NLP)、コンピュータービジョン、予測分析といった分野への応用を可能にしています。ドイツ政府のAIイニシアチブ(国立AI研究リソース(NAIRR)など)は、イノベーションを促進し、市場の成長を支えています。
- ドイツは、堅牢な技術エコシステム、NVIDIAやGoogleなどの主要企業の存在、AIインフラへの多額の投資により、2024年には102億9,000万米ドルと評価され、収益シェア42.1%で市場を支配します。
- フランスは、AI研究に対する政府の支援と、医療および自動車分野でのAI導入の増加により、2025年から2032年にかけて16.8%のCAGRで成長することが予測されており、最も高い成長率が見込まれています。
- 製品タイプ別では、TensorFlowやPyTorchなどのディープラーニングフレームワークがエンタープライズおよび研究アプリケーションで広く使用されていることにより、ソフトウェアプラットフォームセグメントが2024年に48.7%という最大の市場シェアを占めました。
レポートの範囲とヨーロッパのディープラーニングニューラルネットワーク(DNN)市場のセグメンテーション
属性 |
欧州ディープラーニングニューラルネットワーク(DNN)の主要市場分析 |
対象セグメント |
|
対象国 |
ヨーロッパ
|
主要な市場プレーヤー |
|
市場機会 |
|
付加価値データ情報セット |
データブリッジマーケットリサーチがまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、専門家による詳細な分析、価格設定分析、ブランドシェア分析、消費者調査、人口統計分析、サプライチェーン分析、バリューチェーン分析、原材料/消耗品の概要、ベンダー選択基準、PESTLE分析、ポーター分析、規制の枠組みも含まれています。 |
ディープラーニングニューラルネットワーク(DNN)市場動向
「生成AI、トランスフォーマーモデル、エッジコンピューティング、持続可能なAIソリューション」
- 生成 AI とトランスフォーマーベースのモデルの採用は顕著なトレンドであり、2024 年の新規 DNN 導入の 30% 以上がこれらのテクノロジーを NLP、画像生成、クリエイティブ コンテンツ制作のアプリケーションに活用し、小売業やメディアにおけるユーザー エクスペリエンスを強化します。
- エッジ コンピューティングの台頭により、2024 年の新しい DNN ソリューションの 25% がデバイス上での処理向けに設計され、自動運転車や IoT アプリケーションで普及が進み、レイテンシが短縮され、リアルタイムの意思決定が向上します。
- 持続可能な AI ソリューションへの重点が高まり、2024 年には新しいハードウェア アクセラレータの 15% がエネルギー効率の認定を取得し、欧州のグリーン テクノロジーの取り組みと足並みを揃え、AI コンピューティングの環境への影響を軽減します。
- クラウドベースの DNN プラットフォームの採用は急速に拡大しており、AWS、Microsoft Azure、Google Cloud などのプロバイダーが提供するスケーラブルで柔軟なソリューションによって、2024 年には採用率が 20% 増加すると予想されています。
- 特にスマート製造とヘルスケアの分野では、DNN と IoT エコシステムの統合が拡大しており、2024 年の新しいソリューションの 18% がこれらの分野でのリアルタイム データ分析と自動化向けに設計されています。
- 小売業における推奨システムや医療における予測診断など、パーソナライズされた AI 主導のサービスに対する消費者の需要の高まりが、ヨーロッパ全土で DNN アプリケーションのイノベーションを推進しています。
ディープラーニングニューラルネットワーク(DNN)市場の動向
ドライバ
「AIの導入、ビッグデータの普及、自律システム、政府の支援、そして技術の進歩」
- 業界全体で AI テクノロジーが広く採用され、欧州の AI 市場は 2027 年までに 2,000 億米ドルに達すると予測されており、医療診断、自動運転、金融モデリングなどのアプリケーションにおける DNN の需要が大きく高まっています。
- ビッグデータの急増により、ヨーロッパの企業は 2023 年に 1 日あたり 2.5 エクサバイトを超えるデータを生成すると予想されており、複雑なデータセットを処理および分析して実用的な洞察を得るための高度な DNN の必要性が高まっています。
- 2027 年までに 120 万台以上の自動運転車がドイツの道路を走ると予測されるなど、自動運転車開発が急速に拡大しており、リアルタイム画像処理、センサー融合、意思決定アルゴリズムにおける DNN の需要が高まっています。
- フランス国家 AI イニシアチブや全カナダ AI 戦略などの政府の取り組みは、AI 研究に多大な資金と規制上の支援を提供し、業界全体での DNN の革新と採用を促進しています。
- NVIDIA の A100 GPU や Google の TPU などのハードウェア アクセラレータの進歩により、DNN のパフォーマンスが向上し、データ センターやエッジ デバイスでの複雑なモデルのトレーニングと推論が高速化されます。
- パーソナライズされた消費者体験に対する需要の高まりにより、2023 年にはドイツの小売業者の 65% が AI 主導の推奨システムを導入することが予想され、小売、電子商取引、顧客サービス アプリケーションへの DNN の統合が推進されています。
抑制/挑戦
「開発コストの高さ、データプライバシーの懸念、スキル不足、エネルギー消費、規制の複雑さ」
- 特にカスタム ハードウェア アクセラレータや大規模 AI モデルの場合、DNN の開発と導入にかかるコストが高いため、中小企業での導入が難しくなり、コストに敏感な分野での市場の拡張性が制限されます。
- カリフォルニア州消費者プライバシー法 (CCPA) やフランスの個人情報保護および電子文書法 (PIPEDA) などの規制によって引き起こされるデータ プライバシーに関する懸念により、機密データを扱う DNN プロバイダーのコンプライアンス コストと複雑さが増大します。
- AI とディープラーニングの専門知識を持つスキルが不足しており、2026 年までにヨーロッパで 25 万人の AI 専門家が不足すると予測されており、DNN テクノロジーの実装、保守、革新に課題が生じています。
- DNN のトレーニングと推論のプロセスではエネルギー消費量が多く、大規模モデルでは年間最大 500 MWh を消費するため、特にデータ センターでは持続可能性と運用コストに関する懸念が生じます。
- AIアルゴリズムとハードウェアの継続的な進歩によって引き起こされる急速な技術陳腐化により、企業は研究開発に多額の投資を迫られ、小規模企業の収益性が低下し、長期的なイノベーションが制限されます。
- ドイツとフランスのさまざまな AI ガバナンス フレームワークなどの規制の複雑さにより、標準化された DNN の展開とコンプライアンスに課題が生じ、プロバイダーの運用オーバーヘッドが増加します。
欧州ディープラーニングニューラルネットワーク(DNN)市場展望
ヨーロッパのディープラーニング ニューラル ネットワーク (DNN) 市場は、製品タイプ、テクノロジー、アプリケーション、展開、エンド ユーザーに基づいてセグメント化されており、市場の動向と成長機会に関する包括的な理解を提供します。
- 製品タイプ別
製品タイプ別に見ると、市場はソフトウェアプラットフォーム、ハードウェアアクセラレータ、そしてサービスに分類されます。ソフトウェアプラットフォームセグメントは、TensorFlow、PyTorch、Kerasといったフレームワークが企業や研究用途で広く利用されていることに牽引され、2024年には60億9000万米ドルに達し、48.7%の収益シェアを占める大きなセグメントとなります。サービスセグメントは、AIコンサルティングおよび実装サービスの需要に支えられ、2025年から2032年にかけて16.5%という最も高い年平均成長率(CAGR)で成長すると予想されています。
テクノロジー別
技術に基づいて、市場は畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、敵対的生成ネットワーク(GAN)、トランスフォーマー、その他に分類されます。CNNセグメントは、画像認識と自動運転車への利用が牽引し、2024年には40.2%と最大のシェアを占めました。トランスフォーマーセグメントは、NLPと生成AIの進歩に後押しされ、2025年から2032年にかけて17.1%という最も高いCAGRで成長すると予測されています。
アプリケーション別
アプリケーション別に見ると、市場は医療診断、自動運転車、金融サービス、小売・電子商取引、製造自動化、その他に分類されます。医療診断分野は、AIを活用した医用画像処理と予測診断の牽引により、2024年には35.6%と最大の収益シェアを占めました。自動運転車分野は、自動運転車の開発に牽引され、2025年から2032年にかけて18.3%という最も高い年平均成長率(CAGR)で成長すると予想されています。
展開別
導入に基づいて、市場はクラウドベースとオンプレミスに分類されます。クラウドベースセグメントは、AWS、Azure、Google Cloudが提供するスケーラブルなソリューションに牽引され、2024年には60.8%という大きなシェアを占めました。クラウドベースセグメントは、柔軟かつ費用対効果の高いAI導入への需要に支えられ、2025年から2032年にかけて16.9%という最も高いCAGRで成長すると予想されています。
エンドユーザー別
エンドユーザーに基づいて、市場は大企業、医療機関、自動車メーカー、金融機関、政府機関、その他に分類されます。大企業セグメントは、ビジネスアナリティクスにおけるAI導入の牽引役となり、2024年には42.1%の収益シェアで市場を牽引しました。医療機関セグメントは、AIを活用した診断と個別化医療の推進により、2025年から2032年にかけて17.4%という最も高い年平均成長率(CAGR)で成長すると予想されています。
ディープラーニングニューラルネットワーク(DNN)市場の地域分析
ドイツのディープラーニングニューラルネットワーク(DNN)市場インサイト
ドイツは、2024年には42.1%という圧倒的な収益シェアで市場をリードし、市場規模は102億9000万米ドルに達しました。これは、同国の強力なテクノロジーエコシステム、NVIDIA、Google、Microsoftといった主要企業の存在、そしてAIインフラへの多額の投資によるものです。自動運転車、ヘルスケアAI、金融サービスにおける同国のリーダーシップに加え、国家AIイニシアチブを通じた政府支援も相まって、その優位性を強固なものにしています。
フランスのディープラーニング・ニューラルネットワーク(DNN)市場インサイト
フランスは、医療、自動車、製造業におけるAIの研究と導入を支援する「汎カナダAI戦略」などの政府の取り組みに牽引され、2025年から2032年にかけて16.8%という最も高い年平均成長率(CAGR)で成長すると見込まれています。スマートシティや医療診断におけるDNNの導入拡大を受け、フランスは2024年に市場シェアの12.1%を占める見込みです。
英国のディープラーニングニューラルネットワーク(DNN)市場インサイト
英国は2024年に5.6%の市場シェアを獲得しました。これは、自動車産業と製造業の成長が牽引しており、自動化と品質管理へのAI導入が進んでいます。インダストリー4.0を推進する政府の取り組みと、英国に拠点を置くテクノロジー企業との提携が、英国市場の成長を支えています。
ディープラーニングニューラルネットワーク(DNN)の市場シェア
- ディープラーニング ニューラル ネットワーク (DNN) 業界は、主に次のような定評のある企業によってリードされています。
- NVIDIAコーポレーション(米国)
- Google LLC(米国)
- マイクロソフトコーポレーション(米国)
- Amazon Web Services, Inc.(米国)
- インテルコーポレーション(米国)
- IBMコーポレーション(米国)
- アドバンスト・マイクロ・デバイセズ(AMD)(米国)
- Meta AI(米国)
- クアルコム・インコーポレーテッド(米国)
- オラクル・コーポレーション(米国)
- SAS Institute Inc.(米国)
- パランティア・テクノロジーズ(米国)
- H2O.ai(米国)
- DataRobot, Inc.(米国)
- セレブラスシステムズ社(米国)
- xAI(米国)
欧州ディープラーニングニューラルネットワーク(DNN)市場の最新動向
- NVIDIAは2023年10月、ディープニューラルネットワーク(DNN)の学習と推論を高速化するために設計された次世代プロセッサ、H200 Tensor Core GPUを発表しました。H200は、生成AIワークロードにおいて、前世代機と比較して最大20%優れたパフォーマンスを実現します。NLPやコンピュータービジョンのアプリケーションに不可欠な、トランスフォーマーや拡散モデルといった大規模AIモデルに最適化されています。AWSやAzureといった大手クラウドプロバイダーは既にH200をAIプラットフォームに採用し、エンタープライズ環境と研究環境の両方で機能強化を実現しています。
- 2024年1月、Google CloudはVertex AIプラットフォームの新機能として、ディープラーニングを用いたリアルタイムの画像・動画分析を目的としたVertex AI Visionをリリースしました。このクラウドベースのソリューションは、小売業(スマートチェックアウト、在庫追跡など)と製造業(欠陥検出など)のユースケースをサポートします。最適化されたモデルデプロイメントと推論パフォーマンスにより、処理速度が15%向上します。Vertex AI Visionは既存のGoogle Cloudサービスと容易に統合できるため、開発者はコンピュータビジョンアプリケーションをより迅速かつ効率的に拡張できます。
- 2024年3月、マイクロソフトはOpenAIとの連携を拡大し、Azure AIプラットフォームに高度なトランスフォーマーベースのモデルを組み込みました。この統合により、エンタープライズユーザーの自然言語処理(NLP)機能が大幅に強化されます。自動化されたカスタマーサービス、言語翻訳、コンテンツ生成、ドキュメント要約といったアプリケーションが利用可能です。ドイツでは既に100社を超える企業がこれらの機能を採用し、Azureのインフラストラクチャを活用して大規模なインテリジェントオートメーションを実現しています。
- 2024年4月、イーロン・マスクのxAIは、より高度なDNNを統合し、分析的推論とデータ解釈能力を向上させたGrokプラットフォームの強化版を発表しました。このアップデートされたGrokシステムは、予測モデリング、ビジネスインテリジェンス、戦略予測といった分野におけるエンタープライズアプリケーション向けに設計されています。リアルタイムのインサイトとパフォーマンス向上に重点を置いたGrokは、データドリブンな意思決定とエンタープライズレベルのAI導入のための強力なツールとして機能します。
- インテルは2024年6月、エネルギー効率に優れ、高スループットのDNNトレーニングを実現するAIアクセラレーター「Gaudi 3」を発表しました。前世代機と比較して、Gaudi 3は消費電力を25%削減しながら、メモリ帯域幅と演算性能を向上させています。このチップは、大規模データセンター環境におけるAIトレーニングと推論のための費用対効果の高いソリューションとして位置付けられています。欧州の主要データインフラプロバイダーの間で既に導入が始まっています。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。