Global Deep Learning In Machine Vision Market
Taille du marché en milliards USD
TCAC :
%

![]() |
2025 –2032 |
![]() |
USD 5.13 Billion |
![]() |
USD 13.18 Billion |
![]() |
|
![]() |
|
Segmentation du marché mondial de l'apprentissage profond en vision industrielle, par offre (matériel, logiciels et services), application (inspection, analyse d'images, détection d'anomalies, classification d'objets, suivi d'objets, comptage, détection de codes-barres, détection de caractéristiques, détection de localisation, reconnaissance optique de caractères, reconnaissance faciale, segmentation d'instances, etc.), objet (image et vidéo), secteur vertical (électronique, fabrication, automobile et transport, alimentation et boissons, aérospatiale, santé, bâtiment et matériaux, énergie, etc.) - Tendances et prévisions du secteur jusqu'en 2032
Taille du marché de l'apprentissage profond dans la vision artificielle
- Le marché mondial de l'apprentissage profond en vision artificielle était évalué à 5,13 milliards USD en 2024 et devrait atteindre 13,18 milliards USD d'ici 2032.
- Au cours de la période de prévision de 2025 à 2032, le marché devrait croître à un TCAC de 12,50 %, principalement grâce à la demande croissante d'inspection qualité automatisée.
- Cette croissance est tirée par l’adoption croissante de la reconnaissance d’images basée sur l’IA et par l’utilisation croissante des systèmes de vision artificielle dans des secteurs tels que la fabrication, la santé et l’automobile.
Analyse du marché de l'apprentissage profond en vision artificielle
- Le marché de l'apprentissage profond en vision industrielle connaît une croissance significative, tirée par la demande croissante d'inspection qualité automatisée, l'adoption croissante de la reconnaissance d'images basée sur l'IA et l'intégration de la vision industrielle à l'automatisation industrielle dans de nombreux secteurs.
- Les progrès en matière de calcul haute performance, d'IA de pointe et de réseaux neuronaux profonds améliorent les capacités des systèmes basés sur la vision, permettant une prise de décision en temps réel, la détection des défauts et une meilleure automatisation des processus dans les secteurs de la fabrication, de la santé et de l'automobile.
- L'Amérique du Nord domine le marché de l'apprentissage profond en vision artificielle en raison de la forte présence d'entreprises technologiques de premier plan, d'investissements importants en R&D et de l'adoption généralisée de l'automatisation basée sur l'IA dans des secteurs tels que l'automobile et l'électronique.
- Par exemple, aux États-Unis, des entreprises telles que NVIDIA et Cognex développent des systèmes de vision basés sur l'IA pour améliorer le contrôle qualité et rationaliser les processus de production.
- Les tendances émergentes telles que la détection des défauts alimentée par l'IA, le suivi des objets basé sur l'apprentissage profond et l'intégration de la vision artificielle dans la robotique transforment le paysage de l'apprentissage profond dans la vision artificielle, ce qui en fait un élément essentiel de l'automatisation industrielle moderne et de l'assurance qualité.
Portée du rapport et segmentation du marché de l'apprentissage profond dans la vision industrielle
Attributs |
Apprentissage profond en vision artificielle : principales perspectives du marché |
Segments couverts |
|
Pays couverts |
Amérique du Nord
Europe
Asie-Pacifique
Moyen-Orient et Afrique
Amérique du Sud
|
Principaux acteurs du marché |
|
Opportunités de marché |
|
Ensembles d'informations de données à valeur ajoutée |
En plus des informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse approfondie des experts, une production et une capacité géographiquement représentées par entreprise, des configurations de réseau de distributeurs et de partenaires, une analyse détaillée et mise à jour des tendances des prix et une analyse des déficits de la chaîne d'approvisionnement et de la demande. |
Tendances du marché de l'apprentissage profond dans la vision artificielle
« Progrès dans la détection des défauts grâce à l'IA »
- Une tendance majeure qui façonne le marché de l'apprentissage profond dans la vision artificielle est l'adoption croissante de la détection des défauts basée sur l'IA dans des secteurs tels que la fabrication, l'automobile et l'électronique, motivée par le besoin d'une plus grande précision et d'une réduction des erreurs humaines.
- Les entreprises exploitent les algorithmes d'apprentissage profond, l'informatique de pointe et l'analyse de la vision en temps réel pour améliorer les processus de contrôle qualité, minimiser les défauts et améliorer l'efficacité de la production.
- Par exemple, en octobre 2023, Cognex Corporation a lancé le système de vision In-Sight 3800, doté de capacités de détection de défauts basées sur l'apprentissage profond pour améliorer la précision de la fabrication et rationaliser l'inspection automatisée.
- Des technologies avancées telles que la détection d'anomalies basée sur l'IA, l'analyse automatisée des causes profondes et la maintenance prédictive sont intégrées aux systèmes de vision industrielle pour optimiser l'identification des défauts et réduire les temps d'arrêt opérationnels.
- Cette tendance révolutionne l'apprentissage profond dans l'industrie de la vision artificielle en améliorant la qualité de la production, en réduisant les déchets et en favorisant l'adoption de systèmes d'inspection visuelle basés sur l'IA, garantissant ainsi une plus grande efficacité et une meilleure rentabilité pour les entreprises.
Dynamique du marché de l'apprentissage profond dans la vision artificielle
Conducteur
« Adoption croissante de l'inspection qualité basée sur l'IA dans le secteur manufacturier »
- Le marché de l'apprentissage profond dans la vision artificielle connaît une croissance rapide en raison de la dépendance croissante à l'égard de l'inspection de la qualité basée sur l'IA dans les industries manufacturières, motivée par le besoin d'une plus grande précision, d'une plus grande efficacité et d'une meilleure détection des défauts.
- Les entreprises intègrent des systèmes de vision artificielle avec des algorithmes d'apprentissage profond pour améliorer l'inspection visuelle en temps réel, réduire les erreurs humaines et optimiser les lignes de production pour une meilleure cohérence et une meilleure qualité de sortie.
- Par exemple, en avril 2024, Siemens s'est associé à NVIDIA pour intégrer des solutions de vision industrielle basées sur l'IA dans ses processus de fabrication, améliorant ainsi le contrôle qualité automatisé et minimisant les défauts de production.
- Les systèmes de vision alimentés par l'IA permettent la maintenance prédictive, la détection automatisée des anomalies et la classification des défauts en temps réel, réduisant ainsi les coûts opérationnels et améliorant la précision de fabrication.
- Ce pilote devrait accélérer la croissance du marché de l'apprentissage profond dans la vision industrielle en améliorant l'efficacité de la production, en minimisant les temps d'arrêt et en améliorant la qualité globale des produits dans divers secteurs.
Opportunité
« Adoption croissante des systèmes de vision basés sur l'IA dans le secteur de la santé »
- Le marché de l'apprentissage profond dans la vision artificielle est sur le point de connaître une expansion substantielle à mesure que le secteur de la santé adopte de plus en plus de systèmes de vision alimentés par l'IA pour l'imagerie médicale , les diagnostics et les chirurgies assistées par robot.
- La demande d'analyse d'images automatisée, de détection d'anomalies et de surveillance des patients en temps réel stimule les investissements dans des solutions de vision basées sur l'apprentissage profond pour améliorer la précision et l'efficacité des procédures médicales.
- Par exemple, en janvier 2025, GE Healthcare a lancé un système d'imagerie médicale basé sur l'IA exploitant l'apprentissage profond pour améliorer la détection précoce de maladies telles que le cancer et les troubles neurologiques.
- Les prestataires de soins de santé et les instituts de recherche intègrent les technologies de vision par apprentissage profond dans la pathologie, la radiologie et la chirurgie robotique pour permettre des diagnostics de précision et réduire les erreurs humaines.
- Cette opportunité devrait stimuler la croissance à long terme du marché de l'apprentissage profond dans la vision artificielle en révolutionnant l'imagerie médicale, en améliorant les résultats des patients et en favorisant les avancées basées sur l'IA dans l'innovation en matière de soins de santé.
Retenue/Défi
« Coûts de mise en œuvre élevés et complexités d'intégration »
- Le marché de l'apprentissage profond dans la vision industrielle est confronté à des défis importants en raison des coûts élevés de mise en œuvre et des complexités liées à l'intégration des systèmes de vision basés sur l'IA dans les flux de travail industriels existants.
- Le besoin de matériel spécialisé, de formation approfondie aux données et de puissance de calcul avancée fait du déploiement de solutions de vision basées sur l'apprentissage profond une entreprise coûteuse, en particulier pour les petites et moyennes entreprises (PME).
- Par exemple, en juin 2024, un constructeur automobile européen a été confronté à des retards dans le déploiement de systèmes d'inspection visuelle basés sur l'IA en raison de coûts initiaux élevés et de la nécessité de recycler les employés sur les outils d'automatisation basés sur l'IA.
- De plus, les problèmes de compatibilité avec les systèmes existants, le manque de professionnels qualifiés en IA et la nécessité d'affiner continuellement les algorithmes constituent des obstacles à une adoption transparente dans divers secteurs.
- Surmonter ces défis nécessitera des modèles d’IA rentables, des solutions d’apprentissage profond évolutives et des partenariats stratégiques pour faciliter une intégration plus fluide et favoriser une adoption généralisée dans les applications industrielles.
Portée du marché de l'apprentissage profond en vision artificielle
Le marché est segmenté sur la base de l’offre, de l’application, de l’objet et de la verticale.
Segmentation |
Sous-segmentation |
En offrant |
|
Par application |
|
Par objet |
|
Par Vertical |
|
Analyse régionale du marché de l'apprentissage profond en vision artificielle
« L'Amérique du Nord est la région dominante sur le marché de l'apprentissage profond en vision artificielle »
- L'Amérique du Nord dispose d'un écosystème d'IA et d'automatisation très développé, accélérant l'adoption des technologies d'apprentissage profond dans les applications de vision artificielle
- Les secteurs industriels et manufacturiers bien établis de la région stimulent la demande de solutions automatisées de contrôle qualité, de détection des défauts et de maintenance prédictive alimentées par l'apprentissage profond
- Les principales entreprises d'IA et de vision artificielle, ainsi que les meilleurs instituts de recherche, contribuent à l'innovation continue et à la mise en œuvre à grande échelle de systèmes de vision basés sur l'apprentissage profond.
- Ces facteurs positionnent collectivement l'Amérique du Nord comme le marché dominant, favorisant l'innovation, l'investissement et l'expansion soutenue dans le secteur de l'apprentissage profond dans la vision artificielle.
« L'Amérique du Nord devrait enregistrer le taux de croissance le plus élevé »
- L'adoption croissante de l'automatisation et des systèmes de contrôle qualité basés sur l'IA dans des secteurs tels que la fabrication, la santé et l'automobile alimente la croissance du marché.
- L'expansion des applications de l'apprentissage profond dans la vision artificielle, notamment la détection des défauts, la reconnaissance d'objets et la maintenance prédictive, stimule la demande de solutions avancées.
- Les initiatives gouvernementales et les investissements dans les usines intelligentes, l'industrie 4.0 et l'automatisation industrielle basée sur l'IA accélèrent l'adoption des technologies de vision artificielle
- Ces facteurs positionnent collectivement l’Amérique du Nord comme la région connaissant la croissance la plus rapide sur le marché de l’apprentissage profond en vision artificielle, favorisant l’innovation et le déploiement à grande échelle dans tous les secteurs.
Part de marché de l'apprentissage profond dans la vision artificielle
Le paysage concurrentiel du marché fournit des détails par concurrent. Il comprend la présentation de l'entreprise, ses données financières, son chiffre d'affaires, son potentiel de marché, ses investissements en recherche et développement, ses nouvelles initiatives commerciales, sa présence mondiale, ses sites et installations de production, ses capacités de production, ses forces et faiblesses, le lancement de nouveaux produits, leur ampleur et leur portée, ainsi que la domination de ses applications. Les données ci-dessus ne concernent que les activités des entreprises par rapport à leur marché.
Les principaux leaders du marché opérant sur le marché sont :
- Cognex Corporation (États-Unis)
- Intel Corporation (États-Unis)
- NATIONAL INSTRUMENTS CORP. (États-Unis)
- SICK AG (Allemagne)
- Datalogic SpA (Italie)
- STEMMER IMAGING AG INH ON (Allemagne)
- Abto Software (Ukraine)
- Zebra Technologies Corp (États-Unis)
- Autonics Corporation (Corée du Sud)
- Basler AG (Allemagne)
- Cyth Systems, Inc. (États-Unis)
- Euresys (Belgique)
- IDS Imaging Development Systems GmbH (Allemagne)
- LeewayHertz (États-Unis)
- MVTEC SOFTWARE GMBH (Allemagne)
- Omron Corporation (Japon)
- perClass BV (Pays-Bas)
- Qualitas Technologies (Inde)
- RSIP Vision (Israël)
- USS Vision LLC (États-Unis)
- Viska Automation Systems Ltd. Exploité sous le nom de Viska Systems (Irlande)
Derniers développements sur le marché mondial de l'apprentissage profond en vision artificielle
- En janvier 2025, NVIDIA Corporation a renforcé ses collaborations avec des constructeurs automobiles majeurs, dont Toyota, Aurora et Continental, afin d'accélérer le développement de flottes de véhicules hautement automatisés et autonomes. En exploitant les capacités avancées de traitement visuel piloté par l'IA, NVIDIA vise à améliorer la sécurité et la fonctionnalité des systèmes de conduite autonome, consolidant ainsi sa position de leader dans le domaine des véhicules autonomes. Cette expansion devrait permettre des avancées significatives dans les solutions de mobilité basées sur l'IA, façonnant ainsi l'avenir du transport autonome.
- En mai 2024, Avnet, Inc. a présenté le kit de développement Vision-IA QCS6490, permettant aux équipes d'ingénierie de prototyper rapidement des produits Edge AI embarqués hautes performances et dotés de capacités multi-caméras. Ce kit est équipé du module de calcul SMARC MSC SM2S-QCS6490 à faible consommation d'énergie, basé sur le processeur Qualcomm QCS6490, ce qui accélère le déploiement de solutions de vision pilotées par l'IA dans tous les secteurs. Cette innovation devrait accélérer l'adoption des applications de vision pilotées par l'IA, améliorant ainsi l'efficacité dans divers secteurs.
- En mai 2024, Microsoft Corporation a dévoilé GPT-4 Turbo avec Vision, un modèle d'IA multimodal conçu pour traiter les entrées texte et image. Ce modèle optimise diverses applications en permettant l'analyse avancée d'images et de vidéos, la génération de texte, la reconnaissance optique de caractères (OCR) et l'ancrage d'objets, favorisant ainsi l'adoption de l'automatisation basée sur l'IA dans de nombreux secteurs. L'introduction de ce modèle devrait révolutionner le traitement d'images par l'IA, améliorant ainsi les opérations commerciales et les capacités d'automatisation.
- En avril 2024, Cognex Corporation a lancé le système de vision 3D In-Sight L38, intégrant l'IA aux technologies de vision 2D et 3D pour optimiser les processus d'inspection et de mesure. En créant des images 2D intégrées aux données 3D, le système simplifie la formation, améliore la précision de la détection des caractéristiques et garantit des résultats d'inspection cohérents, faisant ainsi progresser les capacités d'automatisation industrielle. Cette avancée est appelée à transformer les processus de contrôle qualité et de fabrication, en augmentant la précision et l'efficacité des applications industrielles.
- En avril 2024, IBM a lancé la plateforme logicielle IBM Z IntelliMagic Vision pour z/OS, une solution d'analyse des performances pour les systèmes IBM Z. Grâce à ses visualisations personnalisées sans code et à ses outils d'analyse de données flexibles, la plateforme permet aux analystes d'identifier les risques potentiels et d'optimiser les charges de travail, améliorant ainsi l'efficacité et la fiabilité des opérations informatiques des entreprises. Ce lancement souligne l'engagement d'IBM à optimiser les performances informatiques des entreprises et à garantir une résilience et une efficacité opérationnelles accrues.
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.