Analyse du marché européen des réseaux neuronaux d'apprentissage profond (DNN) : taille, part et tendances – Aperçu et prévisions du secteur jusqu'en 2032

Demande de table des matières Demande de table des matières Parler à un analysteParler à un analyste Exemple de rapport gratuitExemple de rapport gratuit Renseignez-vous avant d'acheterRenseignez-vous avant Acheter maintenantAcheter maintenant

Analyse du marché européen des réseaux neuronaux d'apprentissage profond (DNN) : taille, part et tendances – Aperçu et prévisions du secteur jusqu'en 2032

  • ICT
  • Upcoming Reports
  • Oct 2021
  • Europe
  • 350 Pages
  • Nombre de tableaux : 220
  • Nombre de figures : 60

Europe Deep Learning Neural Networks Dnns Market

Taille du marché en milliards USD

TCAC :  % Diagram

Chart Image USD 11.50 Billion USD 37.96 Billion 2024 2032
Diagram Période de prévision
2025 –2032
Diagram Taille du marché (année de référence)
USD 11.50 Billion
Diagram Taille du marché (année de prévision)
USD 37.96 Billion
Diagram TCAC
%
Diagram Principaux acteurs du marché
  • ALYUDA analysisLLC
  • ALPHABET INC.
  • IBM
  • Neural Technologies restricted
  • NEURODIMENSIONInc.

Segmentation du marché européen des réseaux neuronaux d'apprentissage profond (DNN) par type de produit (plateformes logicielles, accélérateurs matériels, services), technologie (CNN, RNN, GAN, transformateurs, autres), application (diagnostics de santé, véhicules autonomes, services financiers, vente au détail, fabrication, autres), déploiement (basé sur le cloud, sur site), utilisateur final (entreprises, prestataires de soins de santé, constructeurs automobiles, institutions financières, agences gouvernementales, autres) – Tendances et prévisions du secteur jusqu'en 2032

Marché Z des réseaux neuronaux d'apprentissage profond (DNN)

Taille du marché des réseaux neuronaux d'apprentissage profond (DNN)

  • La taille du marché européen des réseaux neuronaux d'apprentissage profond (DNN) était évaluée à 11,50 milliards USD en 2024  et devrait atteindre  37,96 milliards USD d'ici 2032 , à un TCAC de 16,1 % au cours de la période de prévision.
  • Cette croissance substantielle est principalement due à l'adoption généralisée des technologies d'intelligence artificielle (IA), à l'augmentation des investissements dans les infrastructures d'apprentissage automatique et à la demande croissante d'analyses de données avancées dans des secteurs tels que la santé, l'automobile, la finance et la vente au détail. La prolifération du big data, conjuguée aux progrès de la puissance de calcul, accélère encore l'expansion du marché.
  • Le leadership de la région en matière d'innovation technologique, soutenu par d'importants investissements en recherche et développement (R&D), des initiatives gouvernementales favorisant l'adoption de l'IA et une forte présence d'entreprises technologiques de premier plan, contribue largement à la croissance du marché. Par ailleurs, l'intégration croissante des DNN dans les systèmes autonomes, la fabrication intelligente et les services personnalisés aux consommateurs stimule une forte demande de solutions de deep learning en Europe.

Analyse du marché des réseaux neuronaux d'apprentissage profond (DNN)

  • Les réseaux de neurones à apprentissage profond (DNN) sont des algorithmes d'IA avancés conçus pour imiter les processus cérébraux humains, permettant aux machines de traiter de vastes ensembles de données, de reconnaître des modèles et de prendre des décisions fondées sur les données. Ces systèmes, comprenant des plateformes logicielles, des accélérateurs matériels comme les GPU et les TPU, ainsi que des services professionnels, sont essentiels aux applications de diagnostic médical, de véhicules autonomes, de modélisation financière, de personnalisation du commerce de détail et d'automatisation de la production.
  • Le marché est fortement stimulé par la domination de l'Europe en matière d'innovation en IA, la région représentant plus de 40 % des dépenses mondiales en R&D en IA en 2023, les États-Unis en tête. L'adoption rapide des véhicules autonomes, avec plus de 1,2 million de voitures autonomes prévues sur les routes allemandes d'ici 2027, stimule la demande de réseaux neuronaux dédiés au traitement en temps réel des images et des données de capteurs.
  • Les avancées technologiques, telles que les modèles basés sur les transformateurs et l'IA générative, améliorent les capacités des DNN, permettant des applications en traitement du langage naturel (TALN), en vision par ordinateur et en analyse prédictive. Les initiatives du gouvernement allemand en matière d'IA, telles que la Ressource nationale de recherche en IA (NAIRR), favorisent l'innovation et soutiennent la croissance du marché.
  • L'Allemagne domine le marché avec une part de revenus de 42,1 % en 2024, évaluée à 10,29 milliards de dollars, grâce à son écosystème technologique robuste, à la présence d'acteurs clés comme NVIDIA et Google et à des investissements importants dans l'infrastructure de l'IA.
  • La France devrait connaître le taux de croissance le plus rapide, avec un TCAC projeté de 16,8 % de 2025 à 2032, propulsé par le soutien du gouvernement à la recherche sur l'IA et son adoption croissante dans les secteurs de la santé et de l'automobile.
  • Parmi les types de produits, le segment des plateformes logicielles détenait la plus grande part de marché, soit 48,7 % en 2024, en raison de l'utilisation généralisée de cadres d'apprentissage profond comme TensorFlow et PyTorch dans les applications d'entreprise et de recherche.

Portée du rapport et segmentation du marché européen des réseaux neuronaux d'apprentissage profond (DNN)    

Attributs

Informations clés sur le marché des réseaux neuronaux d'apprentissage profond (DNN) en Europe

Segments couverts

  • Par type de produit : plateformes logicielles, accélérateurs matériels, services
  • Par technologie : réseaux de neurones convolutifs (CNN), réseaux de neurones récurrents (RNN), réseaux antagonistes génératifs (GAN), transformateurs, autres
  • Par application : Diagnostics de santé, Véhicules autonomes, Services financiers, Commerce de détail et e-commerce, Automatisation de la fabrication, Autres
  • Par déploiement : basé sur le cloud, sur site
  • Par utilisateur final : entreprises, prestataires de soins de santé, constructeurs automobiles, institutions financières, agences gouvernementales, autres

Pays couverts

Europe

  • Allemagne
  • France
  • ROYAUME-UNI
  • Pays-Bas
  • Suisse
  • Belgique
  • Russie
  • Italie
  • Espagne
  • Turquie

Principaux acteurs du marché

  • NVIDIA Corporation (États-Unis)
  • Google LLC (États-Unis)
  • Microsoft Corporation (États-Unis)
  • Amazon Web Services, Inc. (États-Unis)
  • Intel Corporation (États-Unis)
  • IBM Corporation (États-Unis)
  • Advanced Micro Devices, Inc. (AMD) (États-Unis)
  • Meta AI (États-Unis)
  • Qualcomm Incorporated (États-Unis)
  • Oracle Corporation (États-Unis)
  • SAS Institute Inc. (États-Unis)
  • Palantir Technologies Inc. (États-Unis)
  • H2O.ai (États-Unis)
  • DataRobot, Inc. (États-Unis)
  • Cerebras Systems Inc. (États-Unis)
  • xAI (États-Unis)

Opportunités de marché

  • Expansion rapide des applications basées sur l’IA dans les véhicules autonomes, les systèmes de santé intelligents et les expériences de vente au détail personnalisées à travers l’Europe.
  • Demande croissante de solutions DNN basées sur le cloud, permettant un déploiement d'IA évolutif et rentable pour les entreprises et les petites entreprises.

Ensembles d'informations de données à valeur ajoutée

Outre les informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse approfondie des experts, une analyse des prix, une analyse de la part de marque, une enquête auprès des consommateurs, une analyse démographique, une analyse de la chaîne d'approvisionnement, une analyse de la chaîne de valeur, un aperçu des matières premières/consommables, des critères de sélection des fournisseurs, une analyse PESTLE, une analyse Porter et un cadre réglementaire.

Tendances du marché des réseaux neuronaux d'apprentissage profond (DNN)

« IA générative, modèles de transformateurs, informatique de pointe et solutions d'IA durables »

  • L'adoption de l'IA générative et des modèles basés sur des transformateurs est une tendance importante, avec plus de 30 % des nouveaux déploiements DNN en 2024 exploitant ces technologies pour des applications en PNL, en génération d'images et en production de contenu créatif, améliorant ainsi l'expérience utilisateur dans le commerce de détail et les médias.
  • L'essor de l'informatique de pointe, avec 25 % des nouvelles solutions DNN en 2024 conçues pour le traitement sur appareil, gagne du terrain dans les véhicules autonomes et les applications IoT, réduisant la latence et améliorant la prise de décision en temps réel.
  • L'accent est mis de plus en plus sur les solutions d'IA durables, avec 15 % des nouveaux accélérateurs matériels certifiés en 2024 pour leur efficacité énergétique, en accord avec les initiatives européennes en matière de technologies vertes et en réduisant l'impact environnemental du calcul de l'IA.
  • L'adoption de plateformes DNN basées sur le cloud connaît une croissance rapide, avec une augmentation de 20 % des taux d'adoption en 2024, grâce à des solutions évolutives et flexibles proposées par des fournisseurs comme AWS, Microsoft Azure et Google Cloud.
  • L'intégration des DNN aux écosystèmes IoT, notamment dans la fabrication intelligente et les soins de santé, se développe, avec 18 % des nouvelles solutions en 2024 conçues pour l'analyse des données en temps réel et l'automatisation dans ces secteurs.
  • La demande croissante des consommateurs pour des services personnalisés basés sur l'IA, tels que les systèmes de recommandation dans le commerce de détail et les diagnostics prédictifs dans les soins de santé, stimule l'innovation dans les applications DNN à travers l'Europe.

Dynamique du marché des réseaux neuronaux d'apprentissage profond (DNN)

Conducteur

« Adoption de l'IA, prolifération du Big Data, systèmes autonomes, soutien gouvernemental et avancées technologiques »

  • L'adoption généralisée des technologies d'IA dans tous les secteurs, le marché européen de l'IA devant atteindre 200 milliards de dollars d'ici 2027, entraîne une demande importante de DNN dans des applications telles que le diagnostic de santé, la conduite autonome et la modélisation financière.
  • La prolifération du big data, avec des entreprises européennes générant plus de 2,5 exaoctets de données par jour en 2023, alimente le besoin de DNN avancés pour traiter et analyser des ensembles de données complexes afin d'obtenir des informations exploitables.
  • L'expansion rapide du développement des véhicules autonomes, avec plus de 1,2 million de voitures autonomes prévues sur les routes allemandes d'ici 2027, augmente la demande de DNN dans le traitement d'images en temps réel, la fusion de capteurs et les algorithmes de prise de décision.
  • Les initiatives gouvernementales, telles que l’Initiative nationale française sur l’IA et la Stratégie pancanadienne en matière d’IA, fournissent un financement substantiel et un soutien réglementaire à la recherche en IA, favorisant l’innovation et l’adoption des DNN dans tous les secteurs.
  • Les avancées dans les accélérateurs matériels, tels que les GPU A100 de NVIDIA et les TPU de Google, améliorent les performances du DNN, permettant une formation et une inférence plus rapides pour les modèles complexes dans les centres de données et les appareils périphériques.
  • La demande croissante d'expériences client personnalisées, avec 65 % des détaillants allemands adoptant des systèmes de recommandation basés sur l'IA en 2023, favorise l'intégration des DNN dans les applications de vente au détail, de commerce électronique et de service client.

Retenue/Défi

« Coûts de développement élevés, préoccupations en matière de confidentialité des données, pénurie de compétences, consommation d'énergie et complexités réglementaires »

  • Le coût élevé du développement et du déploiement des DNN, en particulier pour les accélérateurs matériels personnalisés et les modèles d’IA à grande échelle, constitue un défi pour l’adoption parmi les petites et moyennes entreprises, limitant l’évolutivité du marché dans les segments sensibles aux coûts.
  • Les préoccupations en matière de confidentialité des données, motivées par des réglementations telles que la California Consumer Privacy Act (CCPA) et la loi française sur la protection des informations personnelles et les documents électroniques (PIPEDA), augmentent les coûts de conformité et la complexité pour les fournisseurs de DNN qui traitent des données sensibles.
  • Les pénuries de compétences en IA et en expertise en apprentissage profond, avec un déficit prévu de 250 000 professionnels de l'IA en Europe d'ici 2026, posent des défis à la mise en œuvre, à la maintenance et à l'innovation dans les technologies DNN.
  • La consommation énergétique élevée des processus de formation et d’inférence des DNN, avec des modèles à grande échelle consommant jusqu’à 500 MWh par an, soulève des inquiétudes quant à la durabilité et aux coûts opérationnels, en particulier dans les centres de données.
  • L’obsolescence technologique rapide, alimentée par les progrès continus des algorithmes et du matériel d’IA, pousse les entreprises à investir massivement dans la R&D, réduisant ainsi la rentabilité des petits acteurs et limitant l’innovation à long terme.
  • Les complexités réglementaires, telles que les différents cadres de gouvernance de l'IA en Allemagne et en France, créent des défis pour le déploiement et la conformité standardisés des DNN, augmentant ainsi les frais opérationnels des fournisseurs.

Portée du marché européen des réseaux neuronaux d'apprentissage profond (DNN)

Le marché européen des réseaux de neurones d'apprentissage profond (DNN) est segmenté en fonction du type de produit, de la technologie, de l'application, du déploiement et de l'utilisateur final afin de fournir une compréhension complète de la dynamique du marché et des opportunités de croissance.

  • Par type de produit

En fonction du type de produit, le marché est segmenté en plateformes logicielles, accélérateurs matériels et services. Le segment des plateformes logicielles a dominé le marché avec une part de marché de 48,7 % en 2024, évaluée à 6,09 milliards de dollars, grâce à l'utilisation généralisée de frameworks tels que TensorFlow, PyTorch et Keras dans les applications d'entreprise et de recherche. Le segment des services devrait connaître sa plus forte croissance annuelle composée (TCAC) de 16,5 % entre 2025 et 2032, alimentée par la demande de services de conseil et de mise en œuvre en IA.

Par technologie

Sur la base de la technologie, le marché est segmenté en réseaux de neurones convolutifs (CNN), réseaux de neurones récurrents (RNN), réseaux antagonistes génératifs (GAN), transformateurs, etc. Le segment des CNN détenait la plus grande part de marché, soit 40,2 % en 2024, grâce à son utilisation dans la reconnaissance d'images et les véhicules autonomes. Le segment des transformateurs devrait connaître le taux de croissance annuel composé le plus élevé, soit 17,1 %, entre 2025 et 2032, grâce aux avancées du traitement du langage naturel (TALN) et de l'IA générative.

Par application

En fonction des applications, le marché est segmenté en diagnostics médicaux, véhicules autonomes, services financiers, commerce de détail et e-commerce, automatisation de la production, etc. Le segment des diagnostics médicaux a représenté la plus grande part de chiffre d'affaires, soit 35,6 % en 2024, grâce à l'imagerie médicale basée sur l'IA et aux diagnostics prédictifs. Le segment des véhicules autonomes devrait connaître le taux de croissance annuel composé le plus élevé, soit 18,3 %, entre 2025 et 2032, grâce au développement des voitures autonomes.

Par déploiement

En termes de déploiement, le marché est segmenté entre cloud et sur site. Le segment cloud détenait une part significative de 60,8 % en 2024, porté par les solutions évolutives proposées par AWS, Azure et Google Cloud. Il devrait connaître son taux de croissance annuel composé le plus élevé, soit 16,9 %, entre 2025 et 2032, grâce à la demande de déploiements d'IA flexibles et rentables.

Par utilisateur final


En fonction de l'utilisateur final, le marché est segmenté en entreprises, prestataires de soins de santé, constructeurs automobiles, institutions financières, agences gouvernementales, etc. Le segment des entreprises a dominé avec une part de chiffre d'affaires de 42,1 % en 2024, grâce à l'adoption de l'IA dans l'analyse commerciale. Le segment des prestataires de soins de santé devrait connaître sa plus forte croissance annuelle composée (TCAC) de 17,4 % entre 2025 et 2032, grâce aux diagnostics basés sur l'IA et à la médecine personnalisée.

Analyse régionale du marché des réseaux neuronaux d'apprentissage profond (DNN)

Analyse du marché allemand des réseaux neuronaux d'apprentissage profond (DNN)

L'Allemagne domine le marché avec une part de marché de 42,1 % en 2024, évaluée à 10,29 milliards de dollars, grâce à son écosystème technologique robuste, à la présence d'acteurs clés comme NVIDIA, Google et Microsoft, et à des investissements importants dans les infrastructures d'IA. Le leadership du pays dans les domaines des véhicules autonomes, de l'IA dans le domaine de la santé et des services financiers, conjugué au soutien gouvernemental apporté par l'Initiative nationale pour l'IA, consolide sa domination.

Analyse du marché français des réseaux de neurones à apprentissage profond (DNN)

La France devrait connaître le taux de croissance annuel composé le plus élevé, soit 16,8 %, entre 2025 et 2032, grâce à des initiatives gouvernementales comme la Stratégie pancanadienne en matière d'IA, qui soutient la recherche et l'adoption de l'IA dans les secteurs de la santé, de l'automobile et de la fabrication. La France représentait 12,1 % du marché en 2024, avec une adoption croissante des DNN dans les villes intelligentes et le diagnostic médical.

Analyse du marché britannique des réseaux neuronaux d'apprentissage profond (DNN)

Le Royaume-Uni détenait une part de marché de 5,6 % en 2024, grâce à la croissance de ses secteurs automobile et manufacturier, qui adoptent de plus en plus l'IA pour l'automatisation et le contrôle qualité. Les efforts du gouvernement pour promouvoir l'Industrie 4.0 et les partenariats avec des entreprises technologiques locales soutiennent la croissance du marché au Royaume-Uni.

Part de marché des réseaux neuronaux d'apprentissage profond (DNN)

  • L'industrie des réseaux neuronaux d'apprentissage profond (DNN) est principalement dirigée par des entreprises bien établies, notamment :
  • NVIDIA Corporation (États-Unis)
  • Google LLC (États-Unis)
  • Microsoft Corporation (États-Unis)
  • Amazon Web Services, Inc. (États-Unis)
  • Intel Corporation (États-Unis)
  • IBM Corporation (États-Unis)
  • Advanced Micro Devices, Inc. (AMD) (États-Unis)
  • Meta AI (États-Unis)
  • Qualcomm Incorporated (États-Unis)
  • Oracle Corporation (États-Unis)
  • SAS Institute Inc. (États-Unis)
  • Palantir Technologies Inc. (États-Unis)
  • H2O.ai (États-Unis)
  • DataRobot, Inc. (États-Unis)
  • Cerebras Systems Inc. (États-Unis)
  • xAI (États-Unis)

Derniers développements sur le marché européen des réseaux neuronaux d'apprentissage profond (DNN)

  • En octobre 2023, NVIDIA a dévoilé le GPU H200 Tensor Core, son processeur nouvelle génération conçu pour accélérer l'apprentissage et l'inférence des réseaux neuronaux profonds (DNN). Le H200 offre des performances jusqu'à 20 % supérieures à celles de ses prédécesseurs pour les charges de travail d'IA générative. Il est optimisé pour les modèles d'IA à grande échelle tels que les transformateurs et les modèles de diffusion, essentiels aux applications de traitement du langage naturel (TALN) et de vision par ordinateur. Les principaux fournisseurs de cloud, dont AWS et Azure, ont déjà adopté le H200 pour leurs plateformes d'IA, améliorant ainsi les capacités des environnements d'entreprise et de recherche.
  • En janvier 2024, Google Cloud a lancé Vertex AI Vision, un nouvel ajout à sa plateforme Vertex AI, destiné à l'analyse d'images et de vidéos en temps réel grâce au deep learning. Cette solution cloud prend en charge les cas d'usage dans le commerce de détail (par exemple, caisse intelligente, suivi des stocks) et la fabrication (par exemple, détection des défauts). Elle offre une vitesse de traitement améliorée de 15 %, grâce à un déploiement optimisé des modèles et à des performances d'inférence. Vertex AI Vision s'intègre facilement aux services Google Cloud existants, permettant aux développeurs de faire évoluer leurs applications de vision par ordinateur plus rapidement et plus efficacement.
  • En mars 2024, Microsoft a étendu sa collaboration avec OpenAI en intégrant des modèles avancés basés sur des transformateurs à la plateforme Azure AI. Cette intégration améliore considérablement les capacités de traitement automatique du langage naturel (TALN) pour les utilisateurs en entreprise. Les applications incluent le service client automatisé, la traduction, la génération de contenu et la synthèse de documents. Plus de 100 entreprises allemandes ont déjà adopté ces fonctionnalités, exploitant l'infrastructure Azure pour mettre en œuvre une automatisation intelligente à grande échelle.
  • En avril 2024, xAI, la société d'Elon Musk, a lancé une version améliorée de sa plateforme Grok, intégrant des DNN plus avancés pour un raisonnement analytique et une interprétation des données optimisés. Le système Grok mis à jour est conçu pour les applications d'entreprise dans des domaines tels que la modélisation prédictive, la business intelligence et la prévision stratégique. Axé sur l'analyse en temps réel et l'amélioration des performances, Grok constitue désormais un outil puissant pour la prise de décision basée sur les données et le déploiement de l'IA en entreprise.
  • En juin 2024, Intel a lancé l'accélérateur d'IA Gaudi 3, conçu pour offrir un entraînement DNN économe en énergie et à haut débit. Comparé à son prédécesseur, Gaudi 3 réduit la consommation d'énergie de 25 %, tout en améliorant la bande passante mémoire et les performances de calcul. Cette puce se positionne comme une solution économique pour l'entraînement et l'inférence de l'IA dans les environnements de centres de données à grande échelle. Son adoption a déjà commencé parmi les principaux fournisseurs d'infrastructures de données en Europe.

SKU-

Accédez en ligne au rapport sur le premier cloud mondial de veille économique

  • Tableau de bord d'analyse de données interactif
  • Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
  • Accès d'analyste de recherche pour la personnalisation et les requêtes
  • Analyse de la concurrence avec tableau de bord interactif
  • Dernières actualités, mises à jour et analyse des tendances
  • Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Demande de démonstration

Méthodologie de recherche

La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.

La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.

Personnalisation disponible

Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.

Questions fréquemment posées

Le marché est segmenté en fonction de Segmentation du marché européen des réseaux neuronaux d'apprentissage profond (DNN) par type de produit (plateformes logicielles, accélérateurs matériels, services), technologie (CNN, RNN, GAN, transformateurs, autres), application (diagnostics de santé, véhicules autonomes, services financiers, vente au détail, fabrication, autres), déploiement (basé sur le cloud, sur site), utilisateur final (entreprises, prestataires de soins de santé, constructeurs automobiles, institutions financières, agences gouvernementales, autres) – Tendances et prévisions du secteur jusqu'en 2032 .
La taille du Analyse du marché était estimée à 11.50 USD Billion USD en 2024.
Le Analyse du marché devrait croître à un TCAC de 16.1% sur la période de prévision de 2025 à 2032.
Les principaux acteurs du marché sont ALYUDA analysisLLC, ALPHABET INC., IBM, Neural Technologies restricted, NEURODIMENSIONInc., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm TechnologiesInc., Intel Corporation, Amazon internet ServicesInc., Microsoft, GMDH LLC., Sensory INC., Ward Systems clusterInc., Xilinx Inc., Starmind .
Testimonial