- Une étude récente montre que l'Europe est l'une des principales régions en matière d'innovation liée à l'énergie.
- Les automobiles électriques sont l’un des principaux moteurs du passage à une énergie à faible émission de carbone.
Data Bridge Market Research analyse que le marché des bornes de recharge pour véhicules électriques était évalué à 6,97 milliards de dollars en 2021 et devrait atteindre 167,52 milliards de dollars d’ici 2029, enregistrant un TCAC de 48,80 % au cours de la période de prévision de 2022 à 2029. La popularité croissante et L’utilisation de véhicules électriques a mis en évidence la nécessité de développer des infrastructures de recharge. Par exemple, la Chine, les États-Unis et l’Allemagne dépensent massivement dans les infrastructures de recharge des véhicules électriques (VE), ainsi que dans la recherche et le développement de techniques de recharge plus rapides et plus efficaces. ABB (Suisse), Shell plc (Royaume-Uni), ChargePoint (États-Unis), Tesla (États-Unis), BYD (Chine), bp Chargemaster (Royaume-Uni), Webasto Thermo & Comfort (Allemagne), Schneider Electric (France), Blink Charging Co. (États-Unis), le Groupe Renault (France), Phihong USA Corp. (États-Unis), parmi bien d'autres, comptent parmi les principaux acteurs opérant sur le marché.
Pour en savoir plus sur l’étude, visitez : https://www.databridgemarketresearch.com/fr/reports/global-electric-vehicle-solving-stations-market
L’une des étapes essentielles pour résoudre les problèmes causés par la catastrophe climatique est la transition vers des énergies à faibles émissions de carbone (LCE). Les limites de température de l'Accord de Paris sur le climat peuvent être dépassées si les émissions ne sont pas réduites et si l'utilisation d'énergies plus propres n'est pas développée. Selon la deuxième étude sur le développement des technologies nécessaires pour soutenir la transition vers des formes d'énergie plus vertes, publiée par l'Office européen des brevets (OEB) et l'Agence internationale de l'énergie (AIE), c'est le cas. L'OEB et l'AIE ont parcouru les bases de données internationales de brevets pour trouver des tendances en matière d'innovation, en recensant les cas où les brevets ont été déposés auprès de plusieurs offices, appelés familles de brevets internationaux, afin d'évaluer les progrès accomplis jusqu'à présent (IPF). Selon le document, "ces données sur les brevets offrent des indicateurs précoces de progrès technologiques qui auront certainement un impact sur l'économie et peuvent ainsi illustrer comment l'innovation alimente la transition énergétique".
Fig.1 : Croissance mondiale des énergies à faible émission de carbone
Source : Office européen des brevets
Entre 2014 et 2016, l’expansion des FPI pour l’énergie verte a connu un ralentissement. Mais selon le rapport de l'OEB/AIE, ce chiffre est à nouveau en augmentation. De plus, l’augmentation du nombre de brevets liés au LCE coïncide avec une diminution de l’utilisation des combustibles fossiles.
L’intelligence artificielle (IA), comme dans tous les secteurs, révolutionne les secteurs de l’énergie et des services publics. Afin de garantir que l’électricité soit fournie quand et où elle est nécessaire avec le moins de déchets possible, elle est utilisée pour estimer la demande et contrôler la répartition des ressources. Ceci est crucial pour le secteur des énergies renouvelables, car les énergies renouvelables ne sont souvent pas adaptées au stockage à long terme et doivent être utilisées le plus rapidement possible après leur production. Selon le Forum économique mondial, l’IA sera cruciale pour la transition mondiale vers les énergies renouvelables. Une augmentation de l’efficacité résultera de prévisions plus précises de l’offre et de la demande.
Les modèles décentralisés de production et de distribution d’électricité remplacent également les modèles centralisés. Dans ces modèles, davantage d’énergie est produite par des réseaux électriques localisés et plus petits (tels que les fermes solaires), et la coordination de l’intégration de ces réseaux nécessite des algorithmes d’IA sophistiqués. Le plan est de construire une « couche de coordination intelligente » qui se situera entre l’infrastructure électrique et les bâtiments où les personnes et les objets utilisent l’électricité.
En 2022, nous pouvons nous attendre à davantage d’innovation de la part des startups utilisant l’IA de manière nouvelle. À titre d'illustration, Likewatt en Allemagne a développé Optiwize, un service qui estime les émissions de dioxyde de carbone et la consommation d'énergie pour aider les consommateurs à surveiller les effets de leur consommation d'énergie en temps réel et à faire des choix plus éclairés concernant leurs approvisionnements énergétiques. Pour accroître l’efficacité de la production d’énergie renouvelable, d’autres entreprises créent des technologies de maintenance prédictive. Un système énergétique plus intégré et électrifié avec une interaction accrue entre les secteurs de l'énergie, des transports, de l'industrie et de la construction résulte des tentatives de décarbonisation du système énergétique mondial. Les degrés élevés de décentralisation dans le secteur de l’électricité sont également dus aux efforts visant à décarboniser l’approvisionnement énergétique. Afin de gérer ce système de plus en plus complexe et de l’optimiser pour réduire au maximum les émissions de gaz à effet de serre, il faudra des niveaux considérablement plus élevés de coopération et d’adaptabilité de la part de tous les acteurs du secteur, y compris les consommateurs.
Avec des applications potentielles allant de l'optimisation et de l'intégration efficace de ressources d'énergie renouvelables variables dans le réseau électrique au soutien d'un système de distribution d'électricité proactif et autonome, en passant par l'ouverture de nouvelles sources de revenus pour une flexibilité du côté de la demande, l'IA a un potentiel important pour soutenir et accélérer un une transition énergétique fiable et au moindre coût. La recherche de matériaux hautes performances qui sous-tendent les dernières technologies d’énergie durable et de stockage pourrait bénéficier de manière significative de l’utilisation de l’IA. Cependant, malgré son potentiel, l’IA est parfois utilisée dans le secteur de l’énergie, principalement dans des programmes expérimentaux de maintenance proactive des actifs. Bien qu’efficace, l’IA a un potentiel bien plus élevé pour accélérer la transition énergétique mondiale qu’on ne l’estime actuellement. Vous trouverez ci-dessous une discussion sur l’impact de l’IA sur le secteur de l’énergie via un large éventail d’applications :
Fig.2 : Principales applications de l'IA dans le secteur de l'énergie
- Réseaux intelligents- Pour devenir « intelligents », les réseaux peuvent désormais être connectés à des capteurs, des outils d’analyse de données, des systèmes de stockage d’énergie, des plateformes de gestion de l’énergie et d’autres technologies énergétiques. Les fournisseurs d'énergie peuvent utiliser les réseaux intelligents pour collecter des données sur la consommation d'énergie de chaque appareil du réseau et créer des projets d'efficacité énergétique pour leurs clients. De plus, il permet de surveiller en temps quasi réel la consommation et les flux d’énergie des entreprises énergétiques. Ensuite, grâce à des systèmes automatisés de réponse à la demande qui peuvent couper l’énergie pendant les heures de pointe, les entreprises énergétiques peuvent minimiser leur consommation d’énergie. Ainsi, les ménages et les fournisseurs d’énergie peuvent économiser de l’énergie. Un micro-réseau est un petit réseau électrique qui peut fonctionner indépendamment du réseau principal. L'IA et l'apprentissage automatique sont utilisés par les systèmes de contrôle des micro-réseaux pour optimiser la consommation d'énergie et contrôler le flux d'énergie. Parce qu’ils peuvent offrir la sécurité énergétique en cas d’urgence et simplifier l’intégration des sources d’énergie renouvelables dans le réseau par rapport aux réseaux énergétiques traditionnels, les micro-réseaux gagnent en popularité.
- Sécurité et gestion du réseau- L’IA est utilisée pour gérer les flux d’énergie à l’intérieur et entre les bâtiments, les entreprises, les batteries de stockage, les sources d’énergie renouvelables, les micro-réseaux et le réseau électrique principal afin d’optimiser les systèmes énergétiques. Cela réduit le gaspillage d’énergie tout en sensibilisant les consommateurs à la consommation d’énergie. Même si les sources d’énergie renouvelables intermittentes telles que l’énergie éolienne et solaire gagnent en popularité. En conséquence, ces sources d’énergie ne sont pas toujours disponibles en cas de besoin. Étant donné que le réseau énergétique doit gérer l’énergie en temps réel au fur et à mesure de sa création, cela pose un défi. Les entreprises énergétiques peuvent prédire quand l’électricité renouvelable sera disponible et gérer les réseaux énergétiques en conséquence grâce à l’IA et à l’apprentissage automatique. Les robots sont également utilisés pour les installations énergétiques, l’entretien du réseau et le suivi de la production et de la consommation d’énergie. Afin de réparer les pipelines, les éoliennes et autres infrastructures énergétiques, des robots peuvent être utilisés. Les entreprises énergétiques peuvent encore accroître leur efficacité et réduire leurs coûts en automatisant ces processus. Un système sophistiqué tel que le réseau électrique est ouvert aux pirates. En déjouant les cyberattaques avant qu’elles ne se produisent, l’IA et l’apprentissage automatique peuvent accroître la sécurité des infrastructures électriques. Pour ce faire, l’analyse des données sera utilisée pour identifier les tendances des données énergétiques qui pourraient être des signes d’une cyberattaque. L’IA et l’apprentissage automatique peuvent être utilisés pour réagir à une cyberattaque une fois qu’elle a été détectée.
- Détection de vol de puissance- Le vol et la fraude d'électricité coûtent au secteur de l'énergie et des services publics jusqu'à 96 milliards de dollars par an, dont jusqu'à 6 milliards de dollars de pertes se produisant rien qu'aux États-Unis. Le prélèvement illicite d’énergie sur le réseau est connu sous le nom de vol d’électricité. La distorsion délibérée des données énergétiques ou de la consommation d’énergie est connue sous le nom de fraude énergétique. Ces anomalies peuvent être automatiquement détectées et signalées pour être résolues par les entreprises énergétiques grâce à l’IA et à l’apprentissage automatique. Les entreprises énergétiques peuvent le faire pour préserver leurs ressources, réduire le gaspillage énergétique et réaliser des économies financières.
- Production améliorée et accrue- Le secteur de l’énergie utilise également l’IA et l’apprentissage automatique pour augmenter la production. Par exemple, les sociétés pétrolières et gazières utilisent des algorithmes d’apprentissage automatique pour mieux localiser les puits et augmenter la production. Ces entreprises peuvent décider plus efficacement où forer du pétrole et du gaz en analysant les données obtenues à partir d’études sismiques et d’autres sources. Cela améliorera l’efficacité énergétique et aboutira à un système énergétique plus propre et plus efficace, qui sera plus simple à gérer pour les fournisseurs d’énergie.
- Stockage d'énergie et analyse prédictive- D’ici 2030, le marché du stockage d’énergie devrait être multiplié par 20. Des technologies intelligentes de stockage d’énergie peuvent être incluses dans le réseau énergétique pour améliorer l’efficacité de la gestion de l’énergie. Les entreprises d'électricité peuvent désormais fournir de l'énergie quand elles en ont besoin, même si leur approvisionnement actuel en énergie est insuffisant, en utilisant le stockage d'énergie pour construire des centrales électriques virtuelles. Cela réduit la nécessité pour les sociétés énergétiques de construire de toutes nouvelles centrales électriques. Les changements futurs dans la demande énergétique peuvent être prédits grâce à l’analyse prédictive. L'infrastructure appropriée peut alors être construite afin de planifier l'avenir et de répondre aux besoins énergétiques. Les entreprises du secteur de l’énergie peuvent également prévoir le moment où une machine ou un équipement est le plus susceptible de dysfonctionner en recourant à l’analyse prédictive. Cela permet non seulement d'éviter les pannes imprévues, mais aide également les entreprises à économiser de l'argent en leur permettant de se préparer au remplacement d'actifs énergétiques coûteux et essentiels et d'éviter les tâches de maintenance imprévues.
- L'engagement des clients- Le secteur de l’énergie commence à adopter l’IA et l’apprentissage automatique pour l’interaction avec les clients. Les entreprises énergétiques peuvent fournir à leurs clients des informations adaptées à leurs besoins en utilisant l’IA et l’apprentissage automatique. Cela implique d'analyser les données des clients pour comprendre leur consommation d'énergie, puis de leur fournir des informations sur la manière de modifier leurs habitudes d'utilisation pour consommer moins d'énergie.
- Commerce d'énergie- Parce que l’énergie doit être donnée immédiatement, le commerce de l’énergie diffère des autres matières premières. Les négociants en énergie sont confrontés à un défi à cause de cela, mais il existe également une chance car les marchés de l’énergie deviennent plus liquides. En prévoyant la demande d’énergie et en donnant aux traders un accès aux données sur les prix en temps réel, l’IA et l’apprentissage automatique peuvent être utilisés pour améliorer l’efficacité du marché du commerce de l’énergie. Les négociants en énergie peuvent ensuite utiliser ces informations pour prendre des décisions plus éclairées quant au moment d’acheter et de vendre de l’énergie. Les contrats d'achat d'électricité (PPA), un contrat financier entre acheteurs et vendeurs d'énergie, ont été développés à l'aide de la technologie blockchain. Ces contrats sont plus efficaces grâce à la technologie blockchain car elle accélère les transactions, coûte moins cher à utiliser que les plateformes PPA classiques et repose sur une plateforme très sécurisée.
Le marché des connecteurs d’énergie renouvelable devrait croître à un taux de 6,10 % sur la période de prévision de 2021 à 2028. Le rapport d’étude de marché Data Bridge sur le marché des connecteurs d’énergie renouvelable fournit une analyse et des informations sur des facteurs tels que l’adoption croissante de sources d’énergie renouvelables. Les coûts d’installation élevés et l’épuisement des ressources naturelles constituent des contraintes sur le marché des connecteurs d’énergie renouvelable au cours de la période de prévision susmentionnée. Les niveaux croissants de réchauffement climatique et l’augmentation rapide de la population deviendront le plus grand défi de la croissance du marché des connecteurs d’énergie renouvelable au cours de la période de prévision mentionnée ci-dessus. Le marché des connecteurs d’énergie renouvelable est segmenté en fonction des types, de la source d’énergie, de l’application et de l’utilisateur final. L’Asie-Pacifique dominera le marché des connecteurs d’énergie renouvelable en raison de l’augmentation des réformes énergétiques dans la région ainsi que du nombre croissant de canaux de distribution, tandis que l’Amérique du Nord s’attend à une croissance au cours de la période de prévision 2021-2028 en raison de la prévalence de politiques favorables et normes croissantes en matière de portefeuille d’énergies renouvelables.
Pour en savoir plus sur l’étude, visitez : https://www.databridgemarketresearch.com/fr/reports/global-renewable-energy-connector-market
Comment l’IA va-t-elle accélérer le rythme de la transition énergétique ?
La nouvelle évaluation du GIEC indique sans ambiguïté qu’il est urgent d’agir davantage pour prévenir les impacts climatiques catastrophiques à long terme. Les combustibles fossiles fournissent encore plus de 80 % de l'énergie mondiale, c'est pourquoi toute initiative doit se concentrer sur le secteur énergétique. Heureusement, le système énergétique est déjà en train de changer ; la production d’énergie renouvelable se développe rapidement en raison de la baisse des coûts et de l’intérêt croissant des investisseurs. Cependant, il ne reste plus beaucoup de temps et l’ampleur et le coût de la décarbonation de l’ensemble du système énergétique restent énormes. Jusqu’à présent, la majorité des efforts de transition du secteur énergétique se sont concentrés sur le matériel : de nouvelles infrastructures à faible émission de carbone qui remplaceront les anciens systèmes à forte intensité de carbone. Autre instrument crucial du changement, les technologies numériques de nouvelle génération, en particulier l’intelligence artificielle, ont reçu très peu d’attention et de financement (IA). Ces technologies puissantes ont le potentiel d’accélérer la transition énergétique en étant adoptées à des échelles plus rapides que les nouvelles solutions matérielles. Trois tendances majeures déterminent le potentiel de l’IA pour accélérer la transition énergétique :
- Les processus historiques de décarbonation ne font que commencer dans les industries à forte intensité énergétique, notamment l’énergie, les transports, l’industrie lourde et le bâtiment, grâce à la pression croissante du public en faveur de réductions rapides des émissions de CO2. Ces transformations sont d’une ampleur considérable. Selon BloombergNEF, entre 92 000 et 173 000 milliards de dollars d’investissements dans les infrastructures seront nécessaires pour atteindre zéro émission nette d’ici 2050, rien que dans le secteur de l’énergie. Par conséquent, même des augmentations modestes en matière d’énergie propre et de flexibilité, d’efficacité ou de capacité industrielle à faible émission de carbone peuvent générer des milliers de milliards de dollars en valeur et en économies.
- Le secteur de l'électricité est en train de devenir le principal pilier de l'approvisionnement énergétique mondial, à mesure que l'électricité soutient un plus grand nombre d'industries et d'applications. Pour garantir que les réseaux électriques puissent être gérés de manière sûre et fiable, l’augmentation du déploiement des énergies renouvelables signifiera qu’une plus grande quantité d’énergie sera fournie par des sources sporadiques (telles que l’énergie solaire et éolienne), augmentant ainsi la nécessité de prévoir, de coordonner et de consommer de manière flexible.
- L’expansion rapide de la production d’électricité distribuée, du stockage distribué et de l’amélioration des capacités de réponse à la demande est motivée par le passage à des systèmes énergétiques à faibles émissions de carbone. Ces capacités doivent être coordonnées et intégrées via des réseaux électriques transactionnels davantage en réseau.
Le système énergétique et les secteurs à forte intensité énergétique sont confrontés à d’énormes obstacles stratégiques et opérationnels pour suivre ces tendances. L'IA peut aider les parties prenantes du système énergétique à identifier des modèles et des informations sur les données, à tirer des leçons de l'expérience et à améliorer les performances du système au fil du temps, ainsi qu'à prédire et modéliser les résultats potentiels de situations complexes et multivariées en établissant une couche de coordination intelligente à travers la production, la transmission et l'utilisation. d'énergie. De nombreux domaines de la transition énergétique bénéficient déjà d’avantages tangibles grâce à l’IA, notamment la prévision des énergies renouvelables, l’exploitation et l’optimisation du réseau, les actifs énergétiques distribués et la coordination de la gestion de la demande, ainsi que l’innovation et la découverte de matériaux. Bien que l’utilisation de l’IA dans le secteur de l’énergie se soit jusqu’à présent révélée prometteuse, il n’y a pas eu beaucoup d’innovation ni d’acceptation généralisée. Cela offre une chance fantastique d’accélérer la transition vers le futur système énergétique dont nous avons besoin : un système sans émissions, extrêmement efficace et connecté. La capacité de l’IA à accélérer la transition énergétique mondiale est bien plus grande qu’on ne le pensait auparavant, mais ce potentiel ne peut être réalisé que si l’innovation, l’adoption et la collaboration en matière d’IA à l’échelle de l’industrie sont accrues.
En quoi l’IA est-elle essentielle à la résilience des réseaux d’énergies renouvelables ?
- Afin de gérer les réseaux décentralisés tout au long de la transition mondiale vers les énergies renouvelables, la technologie de l’intelligence artificielle (IA) sera nécessaire
- L'IA peut optimiser la consommation et le stockage de l'énergie pour réduire les coûts et équilibrer les besoins en matière d'offre et de demande d'électricité en temps réel.
- Une gouvernance technologique sera nécessaire pour garantir des sources électriques résilientes, promouvoir l’innovation et démocratiser l’accès.
Afin de résoudre les défis d'aujourd'hui en utilisant la technologie du passé, des appels ont été lancés pour que le gouvernement investisse dans l'infrastructure du réseau afin de moderniser les longues lignes de transport à partir d'une source d'alimentation électrique centralisée. Il existe déjà un substitut supérieur et plus progressiste, l’intelligence artificielle (IA) qui utilise des sources d’énergie renouvelables distribuées. L’IA est donc essentielle à la promotion des énergies renouvelables de deux manières :
Fig.3 : Aide d'IA à la promotion des énergies renouvelables
- Complexité accrue dans les énergies renouvelables- Plus d’énergie sera produite à partir de sources distribuées et renouvelables à mesure que le monde deviendra plus électrifié. Pensez aux batteries, aux panneaux solaires privés, aux parcs éoliens et aux micro-réseaux. Même s’ils sont avantageux pour la durabilité, ils compliqueront les infrastructures énergétiques à l’échelle mondiale. Un délicat exercice d’équilibre sera nécessaire pour faire correspondre l’offre et la demande sans mettre le réseau à genoux au cours des 10 à 15 prochaines années en raison de l’adoption croissante des véhicules électriques, de l’électrification des systèmes de chauffage et de la prolifération des ressources énergétiques distribuées. (DER) comme les éoliennes et les panneaux solaires. Prenons l’Australie comme exemple. D'ici 2030 et 2050, 30 % et 60 % des structures résidentielles, commerciales et industrielles du pays devraient utiliser l'énergie solaire. Des situations similaires se produisent dans le monde entier, alors que de plus en plus de consommateurs commerciaux, gouvernementaux et résidentiels produisent leur propre énergie à l’aide de panneaux solaires, la stockent dans des batteries pour l’utiliser dans des véhicules électriques ou la restituent au réseau. Nos projections montrent que d'ici 2030, il y aura 89 millions de dispositifs de stockage d'énergie sur le réseau en Europe, contre 36 millions actuellement estimés (voir image ci-dessous). Les réseaux électriques pourraient devenir chaotiques si des millions de gadgets individuels diffusent et téléchargent de l’électricité. En d’autres termes, les services publics devront modifier leur modèle économique puisque la dépendance à l’égard d’un seul service public pour produire et transporter l’électricité diminue. Bientôt, ils ne seront plus la seule source d’énergie ; au lieu de cela, ils devront maintenir l’équilibre du réseau en transférant des électrons provenant de diverses sources et systèmes de stockage pour fournir efficacement l’énergie là où elle est nécessaire, seconde par seconde.
- L'IA pour équilibrer des millions de réseaux Les sources d'énergie décentralisées peuvent transférer toute électricité supplémentaire qu'elles génèrent vers le réseau à l'aide d'un logiciel d'IA, et les services publics peuvent acheminer cette électricité là où elle est nécessaire. Semblable au stockage d’énergie, qui peut conserver de l’énergie supplémentaire lorsque la demande est faible dans les maisons, les bureaux, les voitures et d’autres structures, l’IA peut utiliser cette énergie lorsque la production est insuffisante ou impossible. Il y a de nombreuses pièces mobiles dans ce système ; ainsi, la coordination, la prévision et l’optimisation sont nécessaires pour maintenir la stabilité du réseau. Un utilitaire est comme un chef d’orchestre qui maintient l’orchestre dans le temps tandis que l’IA compose la symphonie en temps réel si vous imaginez les DER comme des musiciens individuels. En conséquence, un système basé sur l’IA peut transformer le jeu. Un réseau plus résilient et plus flexible lorsque des événements imprévus se produisent est le résultat du passage d’un système à forte infrastructure à un système centré sur l’IA. La prévision et le contrôle sont désormais possibles en quelques secondes plutôt qu'en quelques jours.
En ce qui concerne les ressources énergétiques décentralisées, les services publics, les décideurs et les agences de régulation doivent commencer à réfléchir à leurs rôles respectifs. La gestion et la coordination de la mosaïque de producteurs d’énergie distribuée seront essentielles. Les services publics peuvent prendre les devants dans cette situation car ils font face à un nombre décroissant de clients achetant de l’électricité à mesure que de plus en plus de maisons et d’entreprises commencent à produire leur propre énergie grâce aux panneaux solaires sur les toits et à des technologies similaires. Il n’y a pas de temps à perdre car le changement climatique continuera à entraîner des conditions météorologiques plus extrêmes dans le monde. La situation économique actuelle et les discussions politiques interminables comme celle prévue aux États-Unis risquent de freiner les investissements nécessaires. La meilleure solution consiste à ne pas investir dans des réseaux centralisés avec leur réseau de longs câbles et transformateurs ; les gouvernements devraient plutôt planifier un réseau dans lequel les communautés et les bâtiments produisent leur propre électricité, qui est ensuite gérée en temps réel par un logiciel. Les décideurs politiques devraient prendre en compte le financement public de la production d'énergie renouvelable ainsi que les incitations à une production d'énergie plus dispersée dans l'industrie privée et les habitations. Et afin de garantir l’interopérabilité, la transparence et un accès équitable dans l’ensemble de l’environnement énergétique, nous avons besoin d’une gouvernance des logiciels d’IA approuvée à l’échelle mondiale.
Conclusion
Une approche proactive et coopérative de la gouvernance technologique liée à l’IA serait avantageuse pour le secteur de l’énergie. Les années à venir seront importantes pour promouvoir l’innovation dans ce domaine et démocratiser l’accès aux technologies innovantes à faible émission de carbone dans l’ensemble du système énergétique. Si cela n’est pas accepté au préalable, l’industrie doit mettre en œuvre des normes communes en matière de données comme condition pour cela et pour la numérisation plus généralement. Une coopération accrue entre les acteurs du secteur de l’énergie pourrait prendre la forme de projets communs de R&D, partageant les meilleures pratiques techniques pour mettre en œuvre les concepts d’IA et présentant des exemples d’utilisation. La collaboration pourrait également favoriser la confiance entre les créateurs de technologies d’IA, les consommateurs, les régulateurs et les autres parties prenantes interagissant avec les systèmes d’IA. Les régulateurs et les opérateurs de réseaux doivent tenir compte du potentiel d’une variété de technologies numériques (telles que l’apprentissage automatique, l’informatique quantique, la technologie blockchain, entre autres) pour améliorer la façon dont les réseaux sont exploités à mesure que la gestion et l’exploitation des réseaux deviennent plus complexes, en particulier dans le domaine des réseaux. niveau du réseau de distribution. La nécessité de repenser la gestion du réseau et l’opportunité de développer de nouvelles conceptions plus décentralisées pour les décisions d’accès, d’exploitation et de gestion du réseau apparaissent à mesure que le système électrique se décarbonise et se décentralise. La méthode traditionnelle de gestion manuelle des commandes et des contrôles (avec un opérateur de système central) devrait être remplacée par une prise de décision décentralisée basée sur la technologie, permettant une prise de décision plus rapide et ajoutant automatiquement des actifs distribués plus petits au réseau (en utilisant, par exemple, la blockchain). , identité numérique et contrats intelligents). Les gouvernements pourraient ordonner ou offrir des incitations aux organismes publics et industriels pour qu’ils gèrent et financent des bases de données centrales de données industrielles dans le cadre de cette diffusion équitable des données. Ces ensembles de données permettraient de former des algorithmes d’IA et pourraient éventuellement réduire les biais algorithmiques fréquemment provoqués par des données de mauvaise qualité ou rares.
L’augmentation de la demande de systèmes économes en énergie et durables a conduit à une augmentation de la demande de systèmes de récupération d’énergie. Data Bridge Market Research analyse que le marché des systèmes de récupération d’énergie affichera un TCAC de 10,04 % pour la période de prévision 2021-2028. Cela signifie que la valeur marchande actuelle atteindra 1 042,5 millions de dollars d'ici 2028. Un système de récupération d'énergie est la technologie qui convertit l'énergie de l'environnement en énergie électrique utilisable. Ce système extrait de petites quantités d’énergie de l’environnement qui autrement auraient été perdues sous forme de chaleur, de lumière, de son ou de vibration. L’Amérique du Nord domine le marché en raison de l’adoption et de l’application croissantes de systèmes de récupération d’énergie dans les bâtiments et les appareils électroménagers. La croissance du secteur industriel et automobile a également alimenté la croissance du marché dans les pays de cette région. Les États-Unis en sont le plus gros contributeur.
Pour en savoir plus sur l’étude, visitez : https://www.databridgemarketresearch.com/fr/reports/global-energy-harvesting-system-market