Middle East and Africa Artificial Intelligence (AI) in Drug Discovery Market, By Application (Novel Drug Candidates, Drug Optimization and Repurposing Preclinical Testing and Approval, Drug Monitoring, Finding New Diseases Associated Targets and Pathways, Understanding Disease Mechanisms, Aggregating and Synthesizing Information, Formation & Qualification of Hypotheses, De Novo Drug Design, Finding Drug Targets of an Old Drug and Others), Technology (Machine Learning, Deep Learning, Natural Language Processing and Others), Drug Type (Small Molecule and Large Molecule), Offering (Software and Services), Indication (Immuno-Oncology, Neurodegenerative Diseases, Cardiovascular Diseases, Metabolic Diseases and Others), End Use (Contract Research Organizations (CROs), Pharmaceutical & Biotechnology Companies, Research Centers and Academic Institutes and Others) Industry Trends and Forecast to 2029.
Middle East and Africa Artificial Intelligence (AI) in Drug Discovery Market Analysis and Insights
Artificial Intelligence (AI) is expected to be a lucrative technology in the healthcare industry. The implementation of AI reduces R&D gap in the drug manufacturing process and helps in targeted manufacturing of drug. Hence, biopharmaceutical companies are turning to AI to enhance their market share. AI for drug discovery is a technology that uses machines to simulate human intelligence to solve complicated challenges in the drug development procedure.
The adoption of AI solutions in the clinical trial process eliminates possible obstacles, reduces clinical trial cycle time, and increases the productivity and accuracy of the clinical trial process. Technological advancements in AI for drug discovery and reduction in total time involved in drug discovery process are other factors driving the market growth in the forecast period. However, low quality and inconsistent available data will obstruct the market growth. Also, high cost associated with technology and technical limitations will restrain the market growth.
Data Bridge Market Research analyzes that the Middle East and Africa artificial intelligence (AI) in drug discovery market is expected to reach the value of USD 548.76 million by 2029, at a CAGR of 47.1% during the forecast period. Software accounts for the largest technology segment in the market due to rapid developments in technological advancements to commercialize the use of AI in drug discovery market. This market report also covers pricing analysis, patent analysis, and technological advancements in depth.
Report Metric |
Details |
Forecast Period |
2022 to 2029 |
Base Year |
2021 |
Historic Years |
2020 (Customizable to 2019-2014) |
Quantitative Units |
Revenue in USD Million, Pricing in USD |
Segments Covered |
By Application (Novel Drug Candidates, Drug Optimization and Repurposing Preclinical Testing and Approval, Drug Monitoring, Finding New Diseases Associated Targets and Pathways, Understanding Disease Mechanisms, Aggregating and Synthesizing Information, Formation & Qualification of Hypotheses, De Novo Drug Design, Finding Drug Targets of an Old Drug and Others), Technology (Machine Learning, Deep Learning, Natural Language Processing and Others), Drug Type (Small Molecule and Large Molecule), Offering (Software and Services), Indication (Immuno-Oncology, Neurodegenerative Diseases, Cardiovascular Diseases, Metabolic Diseases and Others), End Use (Contract Research Organizations (CROs), Pharmaceutical & Biotechnology Companies, Research Centers and Academic Institutes and Others) |
Countries Covered |
U.A.E, Israel, South Africa, Saudi Arabia, Egypt, rest of Middle East and Africa |
Market Players Covered |
Some of the key players operating in the market are NVIDIA Corporation, IBM Corp., Atomwise Inc., Microsoft, Benevolent AI, Aria Pharmaceuticals, Inc., DEEP GENOMICS, Exscientia, Cloud, Insilico Medicine, Cyclica, NuMedii, Inc., Envisagenics, Owkin Inc., BERG LLC, Schrödinger, Inc., XtalPi Inc., and BIOAGE Inc. among others |
Middle East and Africa Artificial Intelligence (AI) in Drug Discovery Market Definition
AI has caught the attention and minds of medical technology practitioners in the past few years, as several companies and major research laboratories have worked to perfect these technologies for clinical use. The first commercialized demonstrations of how AI (also known as Deep Learning (DL), Machine Learning (ML), or Artificial Neural Networks (ANNs)) could assist clinicians are now available. These systems could lead to a paradigm shift in clinician workflow, and increase productivity while simultaneously enhancing treatment and patient throughput. AI for drug discovery is a technology that uses machines to simulate human intelligence to solve complicated challenges in the drug development procedure. The adoption of AI solutions in the clinical trial process eliminates possible obstacles, reduces clinical trial cycle time, and increases the productivity and accuracy of the clinical trial process. Therefore, the adoption of these advanced AI solutions in drug discovery processes is gaining popularity amongst life science industry stakeholders. In the pharmaceutical sector, it aids in the discovery of novel compounds, therapeutic target identification, and the development of customized medications. AI platforms used for drug discovery can prove to be a feasible option for deriving insights into the discovery of drugs to treat and minimize the severity of various chronic diseases.
Middle East and Africa Artificial Intelligence (AI) in Drug Discovery Market Dynamics
This section deals with understanding the market drivers, advantages, opportunities, restraints, and challenges. All of this is discussed in detail below:
Drivers
- Rise in incidence of chronic diseases propels need for AI in drug discovery
The incidence of chronic diseases is increasing at a rapid pace across the globe. According to the Centers for Disease Control and Prevention (CDC), six in 10 adults in the U.S. have a chronic disease. Furthermore, the CDC also highlights that chronic diseases such as heart disease and diabetes are the leading causes of death in the U.S. Such statistics shed light on the growing prevalence of chronic diseases and the need to bring down the fatality rate caused due to these diseases.
AI platforms used for drug discovery can prove to be a feasible option for deriving insights into the discovery of drugs to treat and minimize the severity of various chronic diseases. Thus, these factors are expected to act as a driver for the market growth during the forecast period.
- Strategic collaborations, partnerships, and products launch
AI has the potential to transform drug discovery by rapidly accelerating the R&D timeline, making drug development cheaper and faster, and improving the probability of approval. AI can also increase the effectiveness of drug repurposing research.
An increase in cross-industry alliances and collaborations drives the market. Rise in relevance of AI in drug discovery & development, and a surge in funding for R&D activities, including AI technology in the field of drug research, are projected to propel the global market growth. Hence, increase in cross-industry collaborations and partnerships is driving the market.
Restraint
- High cost associated with technology and technical limitations
The current healthcare sector is facing several complex challenges, such as the increased cost of drugs and therapies, and society needs specific significant changes in this area. The entire success of AI depends on the availability of a substantial amount of data because these data are used for the subsequent training provided to the system. Access to data from various database providers can incur extra costs for a company. Clinical trials are directed towards establishing the safety and efficacy of a drug product in humans for a particular disease condition and require six to seven years along with a substantial financial investment. However, only one out of ten molecules entering these trials gain successful clearance, which is a massive loss for the industry. These failures can result from inappropriate patient selection, shortage of technical requirements, and poor infrastructure. Thus, increasing costs with the technology is acting as a restraint for the market growth.
Opportunity
-
Rise in the investments for R&D
The rise in R&D activities and increasing adoption of cloud-based services and applications will provide beneficial opportunities for market growth.
The industry of AI in biopharma continues to grow after a long period of sepsis. This is reflected in the ongoing flow of investments and increase in the number of collaborations between pharmaceutical corporations and AI companies in 2021 to the previous years. The Biopharma industry’s growth is largely influenced by the active engagement of leading pharmaceutical corporations in AI-related investments. The number of scientific publications in the field of AI in Biopharma, and research collaborations between pharma companies and AI-expertise vendors are rapidly increasing, yet, some pharma corporations are still critical of AI applications. ML and AI applications in the pharmaceutical and healthcare industries lead to the formation of a new interdisciplinary field of data-driven drug discovery in healthcare. Thus, rise in investment in R&D activities is acting as an opportunity for market growth.
Challenge
- Lack of skilled professionals
The shortage of skilled professionals is expected to hamper the market growth. The employees have to re-train or learn new skill sets to work efficiently on the complex AI machines to get the desired results for the drug. This challenge that prevents full-fledged adoption of AI in the pharmaceutical industry includes the lack of skilled personnel to operate AI-based platforms, limited budget for small organizations, apprehension of replacing humans leading to job loss, skepticism about the data generated by AI, and the black box phenomenon (that is, how the conclusions are reached by the AI platform). The shortage of skills acts as a major hindrance to drug discovery through AI, discouraging companies to adopt AI-based machines for drug discovery.
As skill demands are too high, it has manifested as a challenge to retain and manage skill-specified professionals. Moreover, technological advancement is another aspect that leads to the increased demand for skilled professionals. There is an urgent need for the education of professionals for AI-based technology. Lack of trained and experienced professionals and persistent skill gaps limit the employability prospects and access to quality jobs. It is therefore apparent that the availability of professionals equipped with adequate skills is challenging the market growth.
Post-COVID-19 Impact on Middle East and Africa Artificial Intelligence (AI) In Drug Discovery Market
The COVID-19 outbreak had a beneficial impact on the expansion of AI in drug discovery industry due to its widespread use by various organizations for the identification as well as screening of existing medicines used in the treatment of COVID-19. AI is useful in detecting active chemicals for the prevention of SARS-CoV, HIV, SARS-CoV-2, influenza virus, and others. During the pandemic, economies all over the world relied on AI-based medication discovery rather than traditional vaccine detection processes, which take years to create and are equally expensive, contributing to the growth of the market.
Manufacturers are making various strategic decisions to bounce back post-COVID-19. The players are conducting multiple R&D activities to improve the technology involved in the Wireless microphone. With this, the companies will bring advanced and accurate AI software to the market.
Recent Developments
- In March 2022, NVIDIA Corporation launched Clara Holoscan MGX to develop and deploy real-time AI applications. Clara Holoscan MGX expands the Clara Holoscan platform to provide an all-in-one, medical-grade reference architecture, as well as long-term software support, to accelerate innovation in the medical device industry. This will help the company for better AI performance in health sector for surgery, diagnostics, and drug discovery.
- In May 2022, Benevolent AI, a leading clinical-stage AI-enabled drug discovery company, announced that AstraZeneca has selected an additional novel target for Idiopathic Pulmonary Fibrosis (IPF) for its drug development portfolio, resulting in a milestone payment to Benevolent AI. This is the third novel target from the collaboration that has been identified using the Benevolent Platform across two disease areas, IPF and chronic kidney disease, and subsequently validated and selected for portfolio entry by AstraZeneca. This builds upon the recent extension of the collaboration with AstraZeneca to include two new disease areas, systemic lupus erythematosus, and heart failure, signed in January 2022. This has helped the company to make its collaboration stronger.
Middle East and Africa Artificial Intelligence (AI) In Drug Discovery Market Scope
Middle East and Africa Artificial Intelligence (AI) in drug discovery market is segmented into application, technology, drug type, offering, indication, and end use. The growth among segments helps you analyze niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
APPLICATION
- Novel Drug Candidates
- Drug Optimization and Repurposing Preclinical Testing and Approval
- Drug Monitoring
- Finding New Diseases Associated Targets and Pathways
- Understanding Disease Mechanisms
- Aggregating and Synthesizing Information
- Formation & Qualification of Hypotheses
- De Novo Drug Design
- Finding Drug Targets of an Old Drug
- Others
Based on application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation & qualification of hypotheses, de novo drug design, finding drug targets of an old drug, and others.
TECHNOLOGY
- Machine Learning (ML)
- Deep Learning (DL)
- Natural Language Processing (NLP)
- Others
Based on technology, the market is segmented into Machine Learning (ML), Deep Learning (DL), Natural Language Processing (NLP), and others.
DRUG TYPE
- Small Molecule
- Large Molecule
Based on drug type, the market is segmented into small molecule and large molecule.
OFFERING
- Software
- Services
Based on offering, the market is segmented into software and services.
INDICATION
- Immuno-Oncology
- Neurodegenerative Diseases
- Cardiovascular Diseases
- Metabolic Diseases
- Others
Based on indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others.
END USE
- Pharmaceutical & Biotechnology Companies
- Contract Research Organizations (CROs)
- Research Centers and Academic Institutes
- Others
Based on end use, the market is segmented into pharmaceutical & biotechnology companies, Contract Research Organizations (CROs), research centers and academic institutes, and others.
Middle East and Africa Artificial Intelligence (AI) in Drug Discovery Market Regional Analysis/Insights
Middle East and Africa Artificial Intelligence (AI) in drug discovery market is analyzed and market size information is provided by application, technology, drug type, offering, indication, and end use.
The countries covered in this market report are U.A.E, Israel, South Africa, Saudi Arabia, Egypt, rest of Middle East and Africa.
- In 2022, Middle East and Africa is dominating due to the increase in government funding. South Africa is expected to grow due to rise in R&D activities for AI in drug discovery.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impact the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts, and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of Middle East and Africa brands and their challenges faced due to large or scarce competition from local and domestic brands, and impact of sales channels are considered while providing forecast analysis of the country data.
Competitive Landscape and Middle East and Africa Artificial Intelligence (AI) In Drug Discovery Market Share Analysis
Middle East and Africa Artificial Intelligence (AI) in drug discovery market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, product approvals, patents, product width and breath, application dominance, technology lifeline curve. The above data points provided are only related to the company’s focus on the Middle East and Africa Artificial Intelligence (AI) in drug discovery market.
Some of the key players operating in the market are NVIDIA Corporation, IBM Corp., Atomwise Inc., Microsoft, Benevolent AI, Aria Pharmaceuticals, Inc., DEEP GENOMICS, Exscientia, Cloud, Insilico Medicine, Cyclica, NuMedii, Inc., Envisagenics, Owkin Inc., BERG LLC, Schrödinger, Inc., XtalPi Inc. and BIOAGE Inc. among others.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Tabla de contenido
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATIONS
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 MARKETS COVERED
2.2 GEOGRAPHICAL SCOPE
2.3 YEARS CONSIDERED FOR THE STUDY
2.4 DBMR TRIPOD DATA VALIDATION MODEL
2.5 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.6 MULTIVARIATE MODELLING
2.7 MARKET APPLICATION COVERAGE GRID
2.8 SOURCE LIFELINE CURVE
2.9 DBMR MARKET POSITION GRID
2.1 VENDOR SHARE ANALYSIS
2.11 SECONDARY SOURCES
2.12 ASSUMPTIONS
3 EXECUTIVE SUMMARY
4 PREMIUM INSIGHT
4.1 PESTEL ANALYSIS
4.2 PORETSR’S FIVE FORCES
5 MARKET OVERVIEW
5.1 DRIVERS
5.1.1 THE RISE IN INCIDENCE OF CHRONIC DISEASES PROPELS NEED FOR ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY
5.1.2 STRATEGIC COLLABORATIONS, PARTNERSHIPS, AND PRODUCTS LAUNCH
5.1.3 REDUCTION IN TOTAL TIME INVOLVED IN DRUG DISCOVERY PROCESS
5.1.4 ADVANCEMENT OF ARTIFICIAL INTELLIGENCE IN THE HEALTHCARE INDUSTRY
5.2 RESTRAINTS
5.2.1 HIGH COST ASSOCIATED WITH TECHNOLOGY AND TECHNICAL LIMITATIONS
5.2.2 DISADVANTAGES AND RISKS ASSOCIATED WITH AI IN DRUG DISCOVERY
5.2.3 LACK OF AVAILABLE QUALITY DATA
5.3 OPPORTUNITIES
5.3.1 RISE IN THE INVESTMENTS FOR R&D
5.3.2 RISING HEALTHCARE INFRASTRUCTURE
5.3.3 DEVELOPMENT OF NOVEL TOOLS
5.4 CHALLENGES
5.4.1 THE MIDDLE EAST & AFRICA SHORTAGE OF AI TALENT
5.4.2 ETHICAL, LEGAL, AND REGULATORY ISSUES FOR AI ADOPTION IN THE PHARMACEUTICAL SCIENCES
6 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
6.1 OVERVIEW
6.2 SOFTWARE
6.2.1 INTEGRATED
6.2.2 STANDALONE
6.3 SERVICES
7 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING (ML)
7.2.1 SUPERVISED LEARNING
7.2.2 UNSUPERVISED LEARNING
7.2.3 REINFORCEMENT LEARNING
7.3 DEEP LEARNING
7.4 NATURAL LANGUAGE PROCESSING (NLP)
7.5 OTHERS
8 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET , BY DRUG TYPE
8.1 OVERVIEW
8.2 SMALL MOLECULE
8.3 LARGE MOLECULE
9 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
9.1 OVERVIEW
9.2 NOVEL DRUG CANDIDATES
9.2.1 PREDICT BIOACTIVITY OF SMALL MOLECULE
9.2.2 IDENTIFY BIOLOGICS TARGET
9.2.3 OTHERS
9.3 DRUG OPTIMISATION AND RE-PURPOSING PRE-CLINICAL TESTING AND APPROVAL
9.4 DRUG MONITORING
9.5 AGGREGATING AND SYNTHESIZING INFORMATION
9.6 DE NOVO DRUG DESIGN
9.7 FINDING DRUG TARGETS OF AN OLD DRUG
9.8 FORMATION & QUALIFICATION OF HYPOTHESES
9.9 UNDERSTANDING DISEASE MECHANISMS
9.1 FINDING NEW DISEASE-ASSOCIATED TARGETS AND PATHWAYS
9.11 OTHERS
10 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
10.1 OVERVIEW
10.2 IMMUNE-ONCOLOGY
10.2.1 BREAST CANCER
10.2.2 LUNG CANCER
10.2.3 COLORECTAL CANCER
10.2.4 PROSTATE CANCER
10.2.5 PANCREATIC CANCER
10.2.6 BRAIN CANCER
10.2.7 LEUKEMIA
10.2.8 OTHERS
10.3 NEURODEGENERATIVE DISEASES
10.4 CARDIOVASCULAR DISEASES
10.5 METABOLIC DISEASES
10.6 OTHERS
11 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET , BY END USE
11.1 OVERVIEW
11.2 CONTRACT RESEARCH ORGANIZATIONS
11.3 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
11.4 RESEARCH CENTERS AND ACADEMIC INSTITUTES
11.5 OTHERS
12 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION
12.1 MIDDLE EAST & AFRICA
12.1.1 SOUTH AFRICA
12.1.2 ISRAEL
12.1.3 SAUDI ARABIA
12.1.4 U.A.E
12.1.5 EGYPT
12.1.6 REST OF MIDDLE EAST AND AFRICA
13 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY LANDSCAPE
13.1 COMPANY SHARE ANALYSIS: MIDDLE EAST & AFRICA
14 SWOT ANALYSIS
15 COMPANY PROFILES
15.1 NVIDIA CORPORATION
15.1.1 COMPANY SNAPSHOT
15.1.2 REVENUE ANALYSIS
15.1.3 COMPANY SHARE ANALYSIS
15.1.4 PRODUCT PORTFOLIO
15.1.5 RECENT DEVELOPMENTS
15.2 MICROSOFT
15.2.1 COMPANY SNAPSHOT
15.2.2 REVENUE ANALYSIS
15.2.3 COMPANY SHARE ANALYSIS
15.2.4 PRODUCT PORTFOLIO
15.2.5 RECENT DEVELOPMENT
15.3 IBM CORP
15.3.1 COMPANY SNAPSHOT
15.3.2 REVENUE ANALYSIS
15.3.3 COMPANY SHARE ANALYSIS
15.3.4 PRODUCT PORTFOLIO
15.3.5 RECENT DEVELOPMENT
15.4 SCHRÖDINGER, INC.
15.4.1 COMPANY SNAPSHOT
15.4.2 REVENUE ANALYSIS
15.4.3 COMPANY SHARE ANALYSIS
15.4.4 PRODUCT PORTFOLIO
15.4.5 RECENT DEVELOPMENTS
15.5 BERG LLC
15.5.1 COMPANY SNAPSHOT
15.5.2 COMPANY SHARE ANALYSIS
15.5.3 PRODUCT PORTFOLIO
15.5.4 RECENT DEVELOPMENTS
15.6 ARDIGEN
15.6.1 COMPANY SNAPSHOT
15.6.2 PRODUCT PORTFOLIO
15.6.3 RECENT DEVELOPMENTS
15.7 EXSCIENTIA
15.7.1 COMPANY SNAPSHOT
15.7.2 REVENUE ANALYSIS
15.7.3 PRODUCT PORTFOLIO
15.7.4 RECENT DEVELOPMENTS
15.8 ARIA PHARMACEUTICALS, INC.
15.8.1 COMPANY SNAPSHOT
15.8.2 PRODUCT PORTFOLIO
15.8.3 RECENT DEVELOPMENTS
15.9 ATOMWISE INC.
15.9.1 COMPANY SNAPSHOT
15.9.2 PRODUCT PORTFOLIO
15.9.3 RECENT DEVELOPMENTS
15.1 BENEVOLENT AI
15.10.1 COMPANY SNAPSHOT
15.10.2 REVENUE ANALYSIS
15.10.3 PRODUCT PORTFOLIO
15.10.4 RECENT DEVELOPMENTS
15.11 BIOAGE INC.,
15.11.1 COMPANY SNAPSHOT
15.11.2 PRODUCT PORTFOLIO
15.11.3 RECENT DEVELOPMENTS
15.12 CLOUD
15.12.1 COMPANY SNAPSHOT
15.12.2 PRODUCT PORTFOLIO
15.12.3 RECENT DEVELOPMENT
15.13 CYCLICA
15.13.1 COMPANY SNAPSHOT
15.13.2 PRODUCT PORTFOLIO
15.13.3 RECENT DEVELOPMENTS
15.14 DEEP GENOMICS
15.14.1 COMPANY SNAPSHOT
15.14.2 PRODUCT PORTFOLIO
15.14.3 RECENT DEVELOPMENTS
15.15 ENVISAGENICS
15.15.1 COMPANY SNAPSHOT
15.15.2 PRODUCT PORTFOLIO
15.15.3 RECENT DEVELOPMENTS
15.16 INSILICO MEDICINE
15.16.1 COMPANY SNAPSHOT
15.16.2 PRODUCT PORTFOLIO
15.16.3 RECENT DEVELOPMENTS
15.17 NUMEDII, INC.
15.17.1 COMPANY SNAPSHOT
15.17.2 PRODUCT PORTFOLIO
15.17.3 RECENT DEVELOPMENT
15.18 OWKIN INC.
15.18.1 COMPANY SNAPSHOT
15.18.2 PRODUCT PORTFOLIO
15.18.3 RECENT DEVELOPMENT
15.19 XTALPI INC.
15.19.1 COMPANY SNAPSHOT
15.19.2 PRODUCT PORTFOLIO
15.19.3 RECENT DEVELOPMENTS
16 QUESTIONNAIRE
17 RELATED REPORTS
Lista de Tablas
TABLE 1 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 2 MIDDLE EAST & AFRICA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 3 MIDDLE EAST & AFRICA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 4 MIDDLE EAST & AFRICA SERVICES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 5 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 6 MIDDLE EAST & AFRICA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 7 MIDDLE EAST & AFRICA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 8 MIDDLE EAST & AFRICA DEEP LEARNING IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 9 MIDDLE EAST & AFRICA NATURAL LANGUAGE PROCESSING (NLP) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 10 MIDDLE EAST & AFRICA OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 11 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 12 MIDDLE EAST & AFRICA SMALL MOLECULE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 13 MIDDLE EAST & AFRICA LARGE MOLECULE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 14 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 15 MIDDLE EAST & AFRICA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 16 MIDDLE EAST & AFRICA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 17 MIDDLE EAST & AFRICA DRUG OPTIMISATION AND RE-PURPOSING PRE-CLINICAL TESTING AND APPROVAL IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 18 MIDDLE EAST & AFRICA DRUG MONITORING IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 19 MIDDLE EAST & AFRICA AGGREGATING AND SYNTHESIZING INFORMATION IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 20 MIDDLE EAST & AFRICA DE NOVO DRUG DESIGN IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 21 MIDDLE EAST & AFRICA FINDING DRUG TARGETS OF AN OLD DRUG IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 22 MIDDLE EAST & AFRICA FORMATION & QUALIFICATION OF HYPOTHESES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 23 MIDDLE EAST & AFRICA UNDERSTANDING DISEASE MECHANISMS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 24 MIDDLE EAST & AFRICA FINDING NEW DISEASE-ASSOCIATED TARGETS AND PATHWAYS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 25 MIDDLE EAST & AFRICA OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 26 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 27 MIDDLE EAST & AFRICA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 28 MIDDLE EAST & AFRICA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 29 MIDDLE EAST & AFRICA NEURODEGENERATIVE DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 30 MIDDLE EAST & AFRICA CARDIOVASCULAR DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 31 MIDDLE EAST & AFRICA METABOLIC DISEASES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 32 MIDDLE EAST & AFRICA OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 33 GLOB MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 34 MIDDLE EAST & AFRICA CONTRACT RESEARCH ORGANIZATIONS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 35 MIDDLE EAST & AFRICA PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 36 MIDDLE EAST & AFRICA RESEARCH CENTRES AND ACADEMIC INSTITUTES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 37 MIDDLE EAST & AFRICA OTHERS IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2020-2029 (USD MILLION)
TABLE 38 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY COUNTRY, 2020-2029 (USD MILLION)
TABLE 39 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 40 MIDDLE EAST & AFRICA ARTIFICIAL SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 41 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 42 MIDDLE EAST & AFRICA ARTIFICIAL MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 43 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 44 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 45 MIDDLE EAST & AFRICA ARTIFICIAL NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 46 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 47 MIDDLE EAST & AFRICA ARTIFICIAL IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 48 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 49 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 50 SOUTH AFRICA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 51 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 52 SOUTH AFRICA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 53 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 54 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 55 SOUTH AFRICA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 56 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 57 SOUTH AFRICA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 58 SOUTH AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 59 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 60 ISRAEL SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 61 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 62 ISRAEL MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 63 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 64 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 65 ISRAEL NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 66 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 67 ISRAEL IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 68 ISRAEL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 69 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 70 SAUDI ARABIA SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 71 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 72 SAUDI ARABIA MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 73 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 74 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 75 SAUDI ARABIA NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 76 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 77 SAUDI ARABIA IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 78 SAUDI ARABIA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 79 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 80 U.A.E SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 81 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 82 U.A.E MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 83 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 84 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 85 U.A.E NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 86 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 87 U.A.E IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 88 U.A.E ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 89 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
TABLE 90 EGYPT SOFTWARE IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TYPE, 2020-2029 (USD MILLION)
TABLE 91 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 92 EGYPT MACHINE LEARNING (ML) IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY, 2020-2029 (USD MILLION)
TABLE 93 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE, 2020-2029 (USD MILLION)
TABLE 94 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 95 EGYPT NOVEL DRUG CANDIDATES IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION, 2020-2029 (USD MILLION)
TABLE 96 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 97 EGYPT IMMUNO-ONCOLOGY IN ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION, 2020-2029 (USD MILLION)
TABLE 98 EGYPT ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USE, 2020-2029 (USD MILLION)
TABLE 99 REST OF MIDDLE EAST AND AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING, 2020-2029 (USD MILLION)
Lista de figuras
FIGURE 1 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SEGMENTATION
FIGURE 2 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DATA TRIANGULATION
FIGURE 3 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DROC ANALYSIS
FIGURE 4 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: MIDDLE EAST & AFRICA VS REGIONAL MARKET ANALYSIS
FIGURE 5 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY RESEARCH ANALYSIS
FIGURE 6 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: INTERVIEW DEMOGRAPHICS
FIGURE 7 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: MARKET APPLICATION COVERAGE GRID
FIGURE 8 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: DBMR MARKET POSITION GRID
FIGURE 9 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: VENDOR SHARE ANALYSIS
FIGURE 10 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SEGMENTATION
FIGURE 11 THE GROWING NEED TO CURB DRUG DISCOVERY COSTS AND REDUCE TIME INVOLVED IN THE DRUG DEVELOPMENT PROCESS, THE RISING ADOPTION OF CLOUD-BASED APPLICATIONS AND SERVICES, AND THE IMPENDING PATENT EXPIRY OF BLOCKBUSTER DRUGS ARE EXPECTED TO DRIVE THE GROWTH OF THE MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET IN THE FORECAST PERIOD OF 2022 TO 2029
FIGURE 12 SOFTWARE IS EXPECTED TO ACCOUNT FOR THE LARGEST SHARE OF THE MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET IN 2022 AND 2029
FIGURE 13 DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES OF THE MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
FIGURE 14 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, 2021
FIGURE 15 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, 2022-2029 (USD MILLION)
FIGURE 16 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, CAGR (2022-2029)
FIGURE 17 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING, LIFELINE CURVE
FIGURE 18 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, 2021
FIGURE 19 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, 2022-2029 (USD MILLION)
FIGURE 20 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, CAGR (2022-2029)
FIGURE 21 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY TECHNOLOGY, LIFELINE CURVE
FIGURE 22 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, 2021
FIGURE 23 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, 2022-2029 (USD MILLION)
FIGURE 24 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, CAGR (2022-2029)
FIGURE 25 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY DRUG TYPE, LIFELINE CURVE
FIGURE 26 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, 2021
FIGURE 27 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, 2020-2029 (USD MILLION)
FIGURE 28 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, CAGR (2022-2029)
FIGURE 29 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY APPLICATION, LIFELINE CURVE
FIGURE 30 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, 2021
FIGURE 31 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, 2020-2029 (USD MILLION)
FIGURE 32 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, CAGR (2022-2029)
FIGURE 33 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY INDICATION, LIFELINE CURVE
FIGURE 34 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY END USE, 2021
FIGURE 35 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY END USE, 2022-2029 (USD MILLION)
FIGURE 36 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY END USE, CAGR (2022-2029)
FIGURE 37 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET : BY END USE, LIFELINE CURVE
FIGURE 38 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: SNAPSHOT (2021)
FIGURE 39 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2021)
FIGURE 40 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2022 & 2029)
FIGURE 41 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY COUNTRY (2021 & 2029)
FIGURE 42 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: BY OFFERING (2022-2029)
FIGURE 43 MIDDLE EAST & AFRICA ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: COMPANY SHARE 2021 (%)
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.