Global Deep Learning In Machine Vision Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%

![]() |
2025 –2032 |
![]() |
USD 5.13 Billion |
![]() |
USD 13.18 Billion |
![]() |
|
![]() |
|
Segmentación del mercado global de aprendizaje profundo en visión artificial, por oferta (hardware, software y servicios), aplicación (inspección, análisis de imágenes, detección de anomalías, clasificación de objetos, seguimiento de objetos, conteo, detección de códigos de barras, detección de características, detección de ubicación, reconocimiento óptico de caracteres, reconocimiento facial, segmentación de instancias y otros), objeto (imagen y video), vertical (electrónica, fabricación, automoción y transporte, alimentos y bebidas, aeroespacial, salud, construcción y materiales, energía y otros): tendencias de la industria y pronóstico hasta 2032.
Tamaño del mercado del aprendizaje profundo en visión artificial
- El mercado global de aprendizaje profundo en visión artificial se valoró en USD 5.13 mil millones en 2024 y se espera que alcance los USD 13.18 mil millones para 2032.
- Durante el período de pronóstico de 2025 a 2032, es probable que el mercado crezca a una CAGR del 12,50 %, impulsado principalmente por la creciente demanda de inspección de calidad automatizada.
- Este crecimiento está impulsado por la creciente adopción del reconocimiento de imágenes impulsado por IA y la expansión del uso de sistemas de visión artificial en industrias como la fabricación, la atención médica y la automoción.
Análisis del mercado del aprendizaje profundo en visión artificial
- El mercado del aprendizaje profundo en visión artificial está experimentando un crecimiento significativo, impulsado por la creciente demanda de inspección de calidad automatizada, la creciente adopción del reconocimiento de imágenes impulsado por IA y la integración de la visión artificial con la automatización industrial en múltiples sectores.
- Los avances en computación de alto rendimiento, inteligencia artificial de borde y redes neuronales profundas están mejorando las capacidades de los sistemas basados en visión, lo que permite la toma de decisiones en tiempo real, la detección de defectos y una mejor automatización de procesos en las industrias manufactureras, de atención médica y automotriz.
- América del Norte domina el mercado del aprendizaje profundo en visión artificial debido a la fuerte presencia de empresas tecnológicas líderes, sólidas inversiones en I+D y la adopción generalizada de la automatización impulsada por IA en industrias como la automotriz y la electrónica.
- Por ejemplo, en EE. UU., empresas como NVIDIA y Cognex están desarrollando sistemas de visión impulsados por IA para mejorar el control de calidad y agilizar los procesos de producción.
- Las tendencias emergentes como la detección de defectos impulsada por IA, el seguimiento de objetos basado en aprendizaje profundo y la integración de la visión artificial en la robótica están transformando el aprendizaje profundo en el panorama de la visión artificial, convirtiéndolo en un componente crítico de la automatización industrial moderna y el aseguramiento de la calidad.
Alcance del informe y segmentación del mercado de aprendizaje profundo en visión artificial
Atributos |
Aprendizaje profundo en visión artificial: Perspectivas clave del mercado |
Segmentos cubiertos |
|
Países cubiertos |
América del norte
Europa
Asia-Pacífico
Oriente Medio y África
Sudamerica
|
Actores clave del mercado |
|
Oportunidades de mercado |
|
Conjuntos de información de datos de valor añadido |
Además de los conocimientos sobre escenarios de mercado como valor de mercado, tasa de crecimiento, segmentación, cobertura geográfica y actores principales, los informes de mercado seleccionados por Data Bridge Market Research también incluyen un análisis profundo de expertos, producción y capacidad por empresa representada geográficamente, diseños de red de distribuidores y socios, análisis detallado y actualizado de tendencias de precios y análisis de déficit de la cadena de suministro y la demanda. |
Tendencias del mercado del aprendizaje profundo en visión artificial
Avances en la detección de defectos con IA
- Una tendencia importante que configura el mercado del aprendizaje profundo en la visión artificial es la creciente adopción de la detección de defectos impulsada por IA en industrias como la fabricación, la automoción y la electrónica, impulsada por la necesidad de una mayor precisión y una reducción de los errores humanos.
- Las empresas están aprovechando algoritmos de aprendizaje profundo, computación de borde y análisis de visión en tiempo real para mejorar los procesos de control de calidad, minimizar los defectos y mejorar la eficiencia de la producción.
- Por ejemplo, en octubre de 2023, Cognex Corporation presentó el sistema de visión In-Sight 3800, con capacidades de detección de defectos impulsadas por aprendizaje profundo para mejorar la precisión de fabricación y agilizar la inspección automatizada.
- Se están integrando tecnologías avanzadas como la detección de anomalías impulsada por IA, el análisis automatizado de la causa raíz y el mantenimiento predictivo en los sistemas de visión artificial para optimizar la identificación de defectos y reducir el tiempo de inactividad operativa.
- Esta tendencia está revolucionando el aprendizaje profundo en la industria de la visión artificial al mejorar la calidad de la producción, reducir el desperdicio e impulsar la adopción de sistemas de inspección visual impulsados por IA, lo que garantiza una mayor eficiencia y rentabilidad para las empresas.
Dinámica del mercado del aprendizaje profundo en la visión artificial
Conductor
Adopción creciente de la inspección de calidad impulsada por IA en la fabricación
- El mercado del aprendizaje profundo en visión artificial está experimentando un rápido crecimiento debido a la creciente dependencia de la inspección de calidad impulsada por IA en las industrias manufactureras, impulsada por la necesidad de mayor precisión, eficiencia y detección de defectos.
- Las empresas están integrando sistemas de visión artificial con algoritmos de aprendizaje profundo para mejorar la inspección visual en tiempo real, reducir el error humano y optimizar las líneas de producción para mejorar la consistencia y la calidad de salida.
- Por ejemplo, en abril de 2024, Siemens se asoció con NVIDIA para integrar soluciones de visión artificial impulsadas por IA en sus procesos de fabricación, mejorando el control de calidad automatizado y minimizando los defectos de producción.
- Los sistemas de visión impulsados por IA permiten el mantenimiento predictivo, la detección automatizada de anomalías y la clasificación de defectos en tiempo real, lo que reduce los costos operativos y mejora la precisión de fabricación.
- Este impulsor está diseñado para acelerar el crecimiento del mercado de aprendizaje profundo en visión artificial al mejorar la eficiencia de la producción, minimizar el tiempo de inactividad y mejorar la calidad general del producto en varias industrias.
Oportunidad
Creciente adopción de sistemas de visión basados en IA en el sector sanitario
- El mercado del aprendizaje profundo en visión artificial está preparado para una expansión sustancial a medida que la industria de la salud adopta cada vez más sistemas de visión impulsados por IA para imágenes médicas , diagnósticos y cirugías asistidas por robot.
- La demanda de análisis automatizado de imágenes, detección de anomalías y monitoreo de pacientes en tiempo real está impulsando la inversión en soluciones de visión basadas en aprendizaje profundo para mejorar la precisión y la eficiencia en los procedimientos médicos.
- Por ejemplo, en enero de 2025, GE Healthcare introdujo un sistema de imágenes médicas impulsado por IA que aprovecha el aprendizaje profundo para mejorar la detección temprana de enfermedades como el cáncer y los trastornos neurológicos.
- Los proveedores de atención médica y las instituciones de investigación están integrando tecnologías de visión de aprendizaje profundo en patología, radiología y cirugía robótica para permitir diagnósticos de precisión y reducir el error humano.
- Se espera que esta oportunidad impulse el crecimiento a largo plazo en el mercado del aprendizaje profundo en visión artificial al revolucionar las imágenes médicas, mejorar los resultados de los pacientes y fomentar los avances impulsados por IA en la innovación en la atención médica.
Restricción/Desafío
Altos costos de implementación y complejidades de integración
- The deep learning in machine vision market faces significant challenges due to the high costs of implementation and the complexities involved in integrating AI-powered vision systems into existing industrial workflows
- The need for specialized hardware, extensive data training, and advanced computational power makes deploying deep learning-based vision solutions a costly endeavor, particularly for small and mid-sized enterprises (SMEs)
- For instance, in June 2024, a European automotive manufacturer faced delays in deploying AI-based vision inspection systems due to high upfront costs and the need for retraining employees on AI-driven automation tools
- In addition, compatibility issues with legacy systems, a lack of skilled AI professionals, and the need for continuous algorithm refinement pose hurdles to seamless adoption across various industries
- Overcoming these challenges will require cost-effective AI models, scalable deep learning solutions, and strategic partnerships to facilitate smoother integration and drive widespread adoption in industrial applications
Deep Learning in Machine Vision Market Scope
The market is segmented on the basis of offering, application, object, and vertical.
Segmentation |
Sub-Segmentation |
By Offering |
|
By Application |
|
By Object |
|
By Vertical |
|
Deep Learning in Machine Vision Market Regional Analysis
“North America is the Dominant Region in the Deep Learning in Machine Vision Market”
- North America boasts a highly developed AI and automation ecosystem, accelerating the adoption of deep learning technologies in machine vision applications
- The region's well-established industrial and manufacturing sectors drive demand for automated quality control, defect detection, and predictive maintenance solutions powered by deep learning
- Major AI and machine vision companies, along with top research institutions, contribute to continuous innovation and large-scale implementation of deep learning-driven vision systems
- These factors collectively position North America as the dominant market, fostering innovation, investment, and sustained expansion in the deep learning in machine vision industry
“North America is Projected to Register the Highest Growth Rate”
- Increasing adoption of automation and AI-driven quality control systems across industries such as manufacturing, healthcare, and automotive is fueling market growth
- Expanding applications of deep learning in machine vision, including defect detection, object recognition, and predictive maintenance, are driving demand for advanced solutions
- Las iniciativas gubernamentales y las inversiones en fábricas inteligentes, Industria 4.0 y automatización industrial impulsada por IA están acelerando la adopción de tecnologías de visión artificial.
- Estos factores posicionan colectivamente a América del Norte como la región de más rápido crecimiento en el mercado del aprendizaje profundo en visión artificial, fomentando la innovación y la implementación generalizada en todas las industrias.
Cuota de mercado del aprendizaje profundo en visión artificial
El panorama competitivo del mercado ofrece detalles por competidor. Se incluye información general de la empresa, sus estados financieros, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, plantas de producción, capacidad de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, alcance y variedad de productos, y dominio de las aplicaciones. Los datos anteriores se refieren únicamente al enfoque de mercado de las empresas.
Los principales líderes del mercado que operan en el mercado son:
- Cognex Corporation (EE. UU.)
- Intel Corporation (EE. UU.)
- CORPORACIÓN NACIONAL DE INSTRUMENTOS (EE. UU.)
- SICK AG (Alemania)
- Datalogic SpA (Italia)
- STEMMER IMAGING AG INH ON (Alemania)
- Abto Software (Ucrania)
- Zebra Technologies Corp (EE. UU.)
- Autonics Corporation (Corea del Sur)
- Basler AG (Alemania)
- Cyth Systems, Inc. (EE. UU.)
- Euresys (Bélgica)
- IDS Imaging Development Systems GmbH (Alemania)
- LeewayHertz (EE. UU.)
- MVTEC SOFTWARE GMBH (Alemania)
- Omron Corporation (Japón)
- perClass BV (Países Bajos)
- Qualitas Technologies (India)
- Visión RSIP (Israel)
- USS Vision LLC (EE. UU.)
- Viska Automation Systems Ltd. (Irlanda)
Últimos avances en el mercado global de aprendizaje profundo en visión artificial
- En enero de 2025, NVIDIA Corporation reforzó sus colaboraciones con empresas automotrices clave, como Toyota, Aurora y Continental, para acelerar el desarrollo de flotas de vehículos altamente automatizadas y autónomas. Al aprovechar las capacidades avanzadas de procesamiento visual basadas en IA, NVIDIA busca mejorar la seguridad y la funcionalidad de los sistemas de conducción autónoma, consolidando su liderazgo en tecnología de vehículos autónomos. Se espera que esta expansión impulse avances significativos en las soluciones de movilidad basadas en IA, dando forma al futuro del transporte autónomo.
- En mayo de 2024, Avnet, Inc. presentó el kit de desarrollo de visión con IA QCS6490 para que los equipos de ingeniería puedan prototipar rápidamente productos de alto rendimiento con IA de borde integrada y capacidades multicámara. El kit está alimentado por el módulo de cómputo MSC SM2S-QCS6490 SMARC de bajo consumo, basado en el procesador Qualcomm QCS6490, lo que facilita una implementación más rápida de soluciones de visión basadas en IA en diferentes industrias. Esta innovación acelerará la adopción de aplicaciones de visión basadas en IA, mejorando la eficiencia en diversos sectores.
- En mayo de 2024, Microsoft Corporation presentó GPT-4 Turbo con Vision, un modelo de IA multimodal diseñado para procesar entradas de texto e imágenes. Este modelo optimiza diversas aplicaciones al permitir el análisis avanzado de imágenes y vídeo, la generación de texto, el reconocimiento óptico de caracteres (OCR) y la localización de objetos, impulsando la adopción de la automatización basada en IA en múltiples sectores. Se espera que la introducción de este modelo revolucione el procesamiento de imágenes basado en IA, optimizando las operaciones empresariales y las capacidades de automatización.
- En abril de 2024, Cognex Corporation lanzó el sistema de visión 3D In-Sight L38, que integra IA con tecnologías de visión 2D y 3D para optimizar los procesos de inspección y medición. Al crear imágenes 2D con datos 3D integrados, el sistema simplifica el entrenamiento, mejora la precisión en la detección de características y garantiza resultados de inspección consistentes, impulsando las capacidades de automatización industrial. Este avance está destinado a transformar los procesos de control de calidad y fabricación, aumentando la precisión y la eficiencia en las aplicaciones industriales.
- En abril de 2024, IBM presentó la plataforma de software IBM Z IntelliMagic Vision para z/OS, una solución de análisis de rendimiento para sistemas IBM Z. Con sus visualizaciones personalizadas sin código y herramientas flexibles de análisis de datos, la plataforma permite a los analistas identificar riesgos potenciales y optimizar las cargas de trabajo, mejorando la eficiencia y la fiabilidad de las operaciones de TI empresariales. Este lanzamiento subraya el compromiso de IBM con la mejora del rendimiento de TI empresarial, garantizando una mayor resiliencia y eficiencia operativa.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.