Global Artificial Intelligence In Aviation Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) : %
Período de pronóstico |
2024 –2031 |
Tamaño del mercado (año base) |
USD 4.33 Billion |
Tamaño del mercado (año de pronóstico) |
USD 90.38 Billion |
Tasa de crecimiento anual compuesta (CAGR) |
|
Jugadoras de los principales mercados |
|
>Mercado global de inteligencia artificial en la aviación, por oferta (servicios, hardware y software), tecnología (visión por computadora, aprendizaje automático, computación de conocimiento del contexto y procesamiento del lenguaje natural ), aplicación (precios dinámicos, asistentes virtuales, operaciones de vuelo, mantenimiento inteligente, fabricación, vigilancia, capacitación y otras aplicaciones): tendencias de la industria y pronóstico hasta 2031.
Análisis y tamaño del mercado de inteligencia artificial en la aviación
La inteligencia artificial en el mercado de la aviación se utiliza para mejorar las medidas de seguridad, optimizar las operaciones y mejorar la experiencia de los pasajeros en varios segmentos de la industria de la aviación. La IA se aplica en las operaciones de vuelo para la optimización de rutas, el mantenimiento predictivo para minimizar el tiempo de inactividad y la gestión del tráfico aéreo para una navegación eficiente. Por ejemplo, Airbus utiliza algoritmos de IA para analizar los datos de las aeronaves y predecir posibles fallos, lo que permite acciones de mantenimiento proactivas, mejorando así la seguridad y reduciendo los costes operativos. La versatilidad de la IA en la aviación se extiende a la automatización de los pisos, los chatbots de atención al cliente y la optimización del manejo de equipaje, transformando la industria.
El tamaño del mercado global de inteligencia artificial en la aviación se valoró en USD 4.33 mil millones en 2023 y se proyecta que alcance un valor de USD 90.38 mil millones para 2031, con una CAGR del 46,2% durante el período de pronóstico de 2024 a 2031. Además de los conocimientos sobre escenarios de mercado como el valor de mercado, la tasa de crecimiento, la segmentación, la cobertura geográfica y los principales actores, los informes de mercado seleccionados por Data Bridge Market Research también incluyen un análisis experto en profundidad, producción y capacidad por empresa representada geográficamente, diseños de red de distribuidores y socios, análisis detallado y actualizado de tendencias de precios y análisis de déficit de la cadena de suministro y la demanda.
Alcance del informe y segmentación del mercado
Métrica del informe |
Detalles |
Período de pronóstico |
2024 a 2031 |
Año base |
2023 |
Años históricos |
2022 (Personalizable para 2016-2021) |
Unidades cuantitativas |
Ingresos en miles de millones de USD, volúmenes en unidades, precios en USD |
Segmentos cubiertos |
Oferta (servicios, hardware y software), tecnología (visión artificial, aprendizaje automático, computación basada en el contexto y procesamiento del lenguaje natural), aplicación (precios dinámicos, asistentes virtuales, operaciones de vuelo, mantenimiento inteligente, fabricación, vigilancia, capacitación y otras aplicaciones) |
Países cubiertos |
EE. UU., Canadá, México, Alemania, Suecia, Polonia, Dinamarca, Italia, Reino Unido, Francia, España, Países Bajos, Bélgica, Suiza, Turquía, Rusia, Resto de Europa en Europa, Japón, China, India, Corea del Sur, Nueva Zelanda, Vietnam, Australia, Singapur, Malasia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico, Brasil, Argentina, Resto de Sudamérica como parte de Sudamérica, Emiratos Árabes Unidos, Arabia Saudita, Omán, Qatar, Kuwait, Sudáfrica y Resto de Medio Oriente y África |
Actores del mercado cubiertos |
IBM (U.S.), Microsoft (U.S.), Amazon Web Services, Inc. (U.S.), Airbus S.A.S. (U.S.), Xilinx (U.S.), NVIDIA Corporation (U.S.), Intel Corporation (U.S.), General Electric (U.S.), Micron Technology, Inc., (U.S.), , Lockheed Martin Corporation (U.S.), SAMSUNG (Sout Korea), Thales(France), MINDTITAN (Estonia), and Mitsubishi Electric Corporation (Japan) among others |
Market Opportunities |
|
Market Definition
Artificial intelligence in aviation refers to the use of computer systems to perform tasks that generally require human intelligence, such as piloting aircraft, managing air traffic, and analyzing data. AI enhances safety, efficiency, and decision-making in aviation by automating processes, detecting anomalies, and providing insights from vast amounts of information. It enables advancements such as autonomous flight, predictive maintenance, and personalized passenger experiences, transforming the industry.
Artificial Intelligence in Aviation Market Dynamics
Drivers
- Enhanced Safety Measures Through AI Integration
AI algorithms analyze vast amounts of data from various sources including sensors, weather patterns, and historical flight data to predict potential safety hazards and mitigate risks proactively. These systems offer real-time monitoring of aircraft systems, airspace conditions, and pilot behavior, enabling rapid response to potential threats. Through leveraging AI, airlines and aviation authorities can identify safety issues before they escalate, leading to fewer accidents, improved incident response, and ultimately, a safer environment for passengers, crew, and assets, thereby fostering trust and driving the adoption of AI technologies in the aviation industry.
For instance,
- Major Germam airlines such as Lufthansa use AI algorithms to predict aircraft component failures, enhancing safety. Their predictive maintenance system analyzes data from sensors and historical records to preemptively address issues, reducing accidents and improving response
- Streamlined Air Traffic Management Systems
AI technologies optimize airspace usage, route planning, and traffic flow management, reducing congestion and delays. AI enables more efficient and flexible decision-making by air traffic controllers by analyzing vast amounts of data, including flight trajectories, and airport operations. This results in enhanced safety, reduced fuel consumption and minimized environmental impact. In addition, AI-driven automation streamlines communication and coordination among stakeholders, improving overall operational efficiency. As air travel demand continues to grow, the adoption of AI in air traffic management becomes essential for managing increasing complexity, ensuring smoother operations, and driving market growth.
For instance,
- NASA's Advanced Air Mobility project represents a development in urban air transportation. The project aims to optimize routes, minimize congestion, and reduce environmental impact by leveraging AI algorithms to analyze flight trajectories and airspace data. This initiative underscores the potential of AI-driven solutions to revolutionize air mobility, ensuring safer and more efficient transportation in increasingly congested urban environments
Opportunities
- Technological Advancement in Barcode Reading
Airlines can optimize routes to avoid hazardous weather conditions, reducing the risk of turbulence, lightning strikes, and other weather-related incidents by integrating these forecasts into flight planning and decision-making processes. This proactive approach enhances flight safety, minimizes disruptions, and improves passenger experience. As airlines prioritize safety and efficiency, the demand for AI-powered weather forecasting solutions continues to grow, driving innovation and investment in the aviation industry.
- Crew Training and Simulation
Use AI-driven simulations and training systems for pilot and crew training. AI can simulate various scenarios, environments, and emergencies to train pilots and crew members effectively, improve decision-making skills, and enhance safety measures. AI enables dynamic scenario generation, providing tailored training experiences for different skill levels and aircraft types. Moreover, continuous data analysis from training sessions empowers personalized feedback and performance evaluation, fostering continuous improvement. Ultimately, AI-driven training solutions contribute to elevated safety standards, ensuring aviation professionals are well-prepared to handle any challenge they may encounter in the skies.
Restraints/Challenges
- Dependency on Reliable Internet Connectivity
AI systems thrive on real-time data processing and communication, they are inherently reliant on uninterrupted internet access. In remote or airspace-constrained regions, where connectivity may be limited or intermittent, the effectiveness of AI applications can be compromised. This dependency introduces vulnerabilities to critical functions such as flight planning, weather monitoring, and communication with ground control. Moreover, in-flight connectivity solutions may not always guarantee the level of reliability required for seamless AI operations. As a result, the aviation industry faces challenges in fully leveraging AI technologies across its operations, hindering widespread adoption and innovation.
- Limited Availability of Skilled AI Professionals
Developing and implementing AI solutions tailored to aviation require specialized expertise in both AI technologies and aviation operations. However, the intersection of these domains remains relatively niche, resulting in a scarcity of qualified professionals. This shortage hampers the timely deployment and optimization of AI applications in aviation, leading to delays, increased costs, and suboptimal performance. Furthermore, competition for AI talent from other industries exacerbates the challenge, making it difficult for aviation companies to attract and retain top-tier AI experts. As a result, the pace of AI adoption in aviation lags behind its potential, impeding innovation and competitiveness.
This market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the market, contact data bridge market research for an analyst brief, our team will help you take an informed market decision to achieve market growth.
Impact and Current Market Scenario of Raw Material Shortage and Shipping Delays
Data Bridge Market Research offers a high-level analysis of the market and delivers information by keeping in account the impact and current market environment of raw material shortage and shipping delays. This translates into assessing strategic possibilities, creating effective action plans, and assisting businesses in making important decisions.
Apart from the standard report, we also offer in-depth analysis of the procurement level from forecasted shipping delays, distributor mapping by region, commodity analysis, production analysis, price mapping trends, sourcing, category performance analysis, supply chain risk management solutions, advanced benchmarking, and other services for procurement and strategic support.
Expected Impact of Economic Slowdown on the Pricing and Availability of Products
When economic activity slows, industries begin to suffer. The forecasted effects of the economic downturn on the pricing and accessibility of the products are taken into account in the market insight reports and intelligence services provided by DBMR. With this, our clients can typically keep one step ahead of their competitors, project their sales and revenue, and estimate their profit and loss expenditures.
Recent Developments
- En octubre de 2022, Searidge Technologies creó un software impulsado por IA que utiliza GPU NVIDIA. Sus soluciones de torres y plataformas digitales utilizan inteligencia artificial de visión para gestionar el control del tráfico de los aeropuertos y alertar a los usuarios sobre problemas de seguridad en tiempo real. Esta tecnología innovadora no solo mejora las operaciones aeroportuarias, sino que también impulsa el crecimiento del mercado al aumentar el atractivo de los aeropuertos como centros más seguros y eficientes, lo que impulsa la demanda de las soluciones de vanguardia de Searidge.
- En abril de 2022, Banglore International Airport Limited (BIAL) colaboró con Amazon para establecer un Centro de Innovación Conjunta (JIC) y acelerar la innovación en la aviación. Esta colaboración fomenta el desarrollo de nuevas tecnologías y soluciones adaptadas a las necesidades de la industria de la aviación, mejorando la eficiencia operativa, la experiencia de los pasajeros y los estándares de seguridad. Como resultado, estimula el crecimiento del mercado impulsando la innovación, atrayendo inversiones y posicionando a BIAL como líder en el avance de la aviación.
Alcance del mercado de la inteligencia artificial en la aviación
El mercado de la inteligencia artificial en la aviación se divide en tres segmentos importantes que se basan en la oferta, la tecnología y la aplicación. El crecimiento entre estos segmentos le ayudará a analizar los segmentos de crecimiento reducidos en las industrias y brindará a los usuarios una valiosa descripción general del mercado y conocimientos del mercado para ayudarlos a tomar decisiones estratégicas para identificar las principales aplicaciones del mercado.
Ofrenda
- Servicios
- Hardware
- Software
Tecnología
- Visión por computadora
- Aprendizaje automático
- Computación basada en el contexto
- Procesamiento del lenguaje natural
Solicitud
- Precios dinámicos
- Asistentes virtuales
- Operaciones de vuelo
- Mantenimiento inteligente
- Fabricación
- Vigilancia
- Capacitación
- Otras aplicaciones
Análisis y perspectivas regionales sobre el mercado de la inteligencia artificial en la aviación
Se analiza el mercado y se proporcionan información sobre el tamaño y las tendencias del mercado mediante la oferta, la tecnología y la aplicación como se menciona anteriormente.
Los países cubiertos en el informe de mercado son EE. UU., Canadá, México, Alemania, Suecia, Polonia, Dinamarca, Italia, Reino Unido, Francia, España, Países Bajos, Bélgica, Suiza, Turquía, Rusia, Resto de Europa en Europa, Japón, China, India, Corea del Sur, Nueva Zelanda, Vietnam, Australia, Singapur, Malasia, Tailandia, Indonesia, Filipinas, Resto de Asia-Pacífico, Brasil, Argentina, Resto de Sudamérica como parte de Sudamérica, Emiratos Árabes Unidos, Arabia Saudita, Omán, Qatar, Kuwait, Sudáfrica y Resto de Medio Oriente y África.
América del Norte domina el mercado de la inteligencia artificial en la aviación y continuará cultivando su tendencia de dominio debido a la rápida industrialización y la presencia de importantes actores clave en esta región.
Se espera que Asia-Pacífico sea la región de más rápido crecimiento en el mercado de inteligencia artificial en la aviación debido a la creciente demanda de tecnologías de IA en el sector de la aviación. Una presencia significativa en el principal actor del mercado en la región que proporciona todos los servicios y productos del mercado a un gran tamaño de mercado.
La sección de países del informe también proporciona factores de impacto de mercado individuales y cambios en la regulación en el mercado a nivel nacional que afectan las tendencias actuales y futuras del mercado. Los puntos de datos como el análisis de la cadena de valor aguas abajo y aguas arriba, las tendencias técnicas y el análisis de las cinco fuerzas de Porter, los estudios de casos son algunos de los indicadores utilizados para pronosticar el escenario del mercado para países individuales. Además, la presencia y disponibilidad de marcas globales y sus desafíos enfrentados debido a la competencia grande o escasa de las marcas locales y nacionales, el impacto de los aranceles nacionales y las rutas comerciales se consideran al proporcionar un análisis de pronóstico de los datos del país.
Análisis de la cuota de mercado de la inteligencia artificial en la aviación en el panorama competitivo
El panorama competitivo del mercado proporciona detalles por competidor. Los detalles incluidos son una descripción general de la empresa, las finanzas de la empresa, los ingresos generados, el potencial de mercado, la inversión en investigación y desarrollo, las nuevas iniciativas de mercado, la presencia global, los sitios e instalaciones de producción, las capacidades de producción, las fortalezas y debilidades de la empresa, el lanzamiento de productos, la amplitud y variedad de productos, y el dominio de las aplicaciones. Los puntos de datos anteriores proporcionados solo están relacionados con el enfoque de las empresas en relación con el mercado.
Algunos de los principales actores que operan en el mercado son:
- IBM (Estados Unidos)
- Microsoft (Estados Unidos)
- Amazon Web Services, Inc. (Estados Unidos)
- Airbus SAS (Estados Unidos)
- Xilinx (Estados Unidos)
- NVIDIA Corporation (Estados Unidos)
- Corporación Intel (Estados Unidos)
- General Electric (Estados Unidos)
- Micron Technology, Inc., (Estados Unidos)
- Corporación Lockheed Martin (Estados Unidos)
- SAMSUNG (Corea del Sur)
- Thales (Francia)
- MINDTITAN (Estonia)
- Mitsubishi Electric Corporation (Japón)
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.