Global Ai Agriculture Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
Mercado global de inteligencia artificial en la agricultura, por oferta (hardware, software y servicios), tecnología (aprendizaje automático [ML], visión artificial, procesamiento del lenguaje natural [PLN], robótica y automatización, entre otros), aplicación (agricultura de precisión, monitoreo ganadero, pronóstico meteorológico, gestión del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro, entre otros), modo de implementación (local y en la nube), usuario final (granjas, empresas de tecnología agrícola, empresas agroquímicas, institutos de investigación, entre otros): tendencias y pronóstico de la industria hasta 2032.
Tamaño del mercado de inteligencia artificial en la agricultura
Data Bridge Market Research analiza que se espera que el mercado global de inteligencia artificial en la agricultura alcance un valor de 10.490 millones de dólares para 2032 y 2.080 millones en 2025, con una tasa de crecimiento anual compuesta (TCAC) del 22,39 % durante el período de pronóstico. El informe también abarca exhaustivamente el análisis de precios, el análisis de patentes y los avances tecnológicos.
Análisis del mercado de inteligencia artificial en la agricultura
El mercado global de inteligencia artificial en la agricultura se perfila para un crecimiento sustancial, impulsado por varios factores clave. El principal impulsor es la significativa reducción de costos que ofrecen las soluciones TEM, lo que resulta atractivo para las empresas que buscan optimizar sus gastos en telecomunicaciones. La creciente adopción de teléfonos móviles y otros dispositivos portátiles impulsa aún más la demanda de soluciones eficaces de gestión de gastos. TEM proporciona una transparencia crucial en los gastos, lo que permite a las organizaciones comprender y controlar mejor su gasto en telecomunicaciones. Además, el auge del IoT y las aplicaciones en la nube ha generado una mayor demanda de soluciones TEM, ya que estas tecnologías introducen nuevas complejidades en la gestión de gastos de telecomunicaciones. Sin embargo, el mercado enfrenta limitaciones, en particular el desafío de cumplir con las diferentes regulaciones y requisitos de cumplimiento normativo en telecomunicaciones en las diferentes regiones, lo que complica la implementación y la gestión. A pesar de estos desafíos, existen considerables oportunidades de crecimiento. La tecnología de automatización para la gestión de gastos de telecomunicaciones presenta una oportunidad significativa, al igual que la externalización de soluciones TEM, que puede ofrecer eficiencia en costos y experiencia.
|
Métrica del informe |
Detalles |
|
Período de pronóstico |
2025 a 2032 |
|
Año base |
2024 |
|
Años históricos |
2023 (2018-2022) |
|
Unidades cuantitativas |
Ingresos en miles de millones de dólares |
|
Segmentos cubiertos |
Al ofrecer (hardware, software y servicios), tecnología [aprendizaje automático (ML), visión artificial , procesamiento del lenguaje natural (PLN) , robótica y automatización, entre otros], aplicación ( agricultura de precisión , monitoreo de ganado , pronóstico del tiempo, gestión del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro, entre otros), modo de implementación (local y en la nube), usuario final (granjas, empresas de tecnología agrícola, empresas agroquímicas, institutos de investigación, entre otros) |
|
Países cubiertos |
EE. UU., Canadá y México, Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía, resto de Europa, China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas, resto de Asia-Pacífico, Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel, resto de Oriente Medio y África, Brasil, Argentina y resto de Sudamérica. |
|
Actores del mercado cubiertos |
Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva y Bowery Farming Inc., entre otros. |
Definición de mercado
El mercado global de inteligencia artificial en la agricultura abarca tecnologías y soluciones que aprovechan la IA para optimizar las prácticas agrícolas. Esto incluye el aprendizaje automático, la visión artificial y la robótica para optimizar la gestión de cultivos, la agricultura de precisión y la asignación de recursos. El mercado abarca herramientas basadas en IA para el análisis de datos, maquinaria autónoma y análisis predictivo, con el objetivo de aumentar la eficiencia, el rendimiento y la sostenibilidad de las operaciones agrícolas. Ofrece una amplia gama de aplicaciones, como la monitorización de cultivos, la gestión del suelo, el control de plagas y la optimización de la cadena de suministro.
Dinámica del mercado global de inteligencia artificial en la agricultura
Conductores
- Aumentar la precisión del monitoreo de cultivos y la predicción del rendimiento
La Inteligencia Artificial (IA) en la agricultura mejora la monitorización de cultivos y la precisión de las predicciones de rendimiento. Al aprovechar algoritmos de aprendizaje automático y el análisis de datos, la IA puede analizar grandes cantidades de datos de diversas fuentes, como imágenes satelitales, sensores de suelo y pronósticos meteorológicos. Esto permite a los agricultores supervisar la salud de los cultivos, identificar plagas y predecir el rendimiento con mayor precisión. En consecuencia, la información obtenida mediante IA ayuda a optimizar la asignación de recursos, mejorar la toma de decisiones y aumentar la productividad agrícola general.
Por ejemplo,
- En julio de 2021, según el blog publicado por Gramener, la predicción del rendimiento de los cultivos mediante aprendizaje automático e IA adquirió cada vez mayor relevancia. El artículo analizaba cómo el análisis espacial y los dispositivos IoT mejoraron la monitorización de cultivos y la predicción del rendimiento. Los modelos de IA y aprendizaje automático, que utilizan imágenes satelitales y datos climáticos, mejoraron la precisión en la predicción del rendimiento de los cultivos mediante la evaluación de las condiciones del suelo y los patrones climáticos. El uso de estas tecnologías benefició a los productores agrícolas al permitir la monitorización remota, el mapeo eficiente de recursos y el análisis predictivo, lo que facilitó una mejor toma de decisiones y planificación. Este avance favorece una gestión de cultivos más eficaz.
Aumento de la implementación de mejores técnicas agrícolas con IA
Aumentar la implementación de mejores técnicas agrícolas con IA implica optimizar el uso de insumos como agua, fertilizantes y pesticidas. Las soluciones basadas en IA permiten una gestión precisa de estos recursos, garantizando su aplicación eficiente y solo donde se necesitan. Esto reduce costos y mejora la productividad al minimizar el desperdicio y maximizar el rendimiento de los cultivos, lo que en última instancia conduce a prácticas agrícolas más sostenibles y rentables.
Por ejemplo,
- En enero de 2024, según un artículo publicado por Intellias, la IA impactó significativamente la agricultura al mejorar las técnicas agrícolas. La IA permitió una gestión precisa del agua, fertilizantes y pesticidas, reduciendo costos e impulsando la productividad. Los sistemas automatizados optimizaron el riego y la aplicación de fertilizantes, lo que resultó en un mejor rendimiento de los cultivos y una mayor eficiencia de los recursos. Estos avances impulsaron prácticas agrícolas más sostenibles y rentables, beneficiando en última instancia a los agricultores mediante la mejora de los rendimientos y el ahorro de costos.
Oportunidad
- Tecnología de automatización para la gestión de gastos de telecomunicaciones
La tecnología de automatización para la Gestión de Gastos de Telecomunicaciones (TEM) optimiza los procesos, mejora la precisión y reduce los costes. Al aprovechar herramientas y software automatizados, los operadores y las empresas de telecomunicaciones gestionan eficientemente las facturas, controlan los gastos y analizan los patrones de uso en tiempo real. Esta tecnología mejora la transparencia y el control, y permite una toma de decisiones proactiva basada en información basada en datos. Además, la automatización minimiza los errores humanos, garantiza el cumplimiento normativo y optimiza la asignación de recursos, convirtiendo la TEM en un activo estratégico.
Por ejemplo,
- En julio de 2022, según un artículo publicado por Brightfin, la adopción de un sistema automatizado de gestión de gastos de telecomunicaciones trajo consigo varias ventajas. En primer lugar, redujo significativamente el número de tickets de soporte técnico relacionados con problemas de telecomunicaciones, liberando recursos de TI. Esta automatización también ahorró tiempo a los empleados al gestionar tareas rutinarias como el procesamiento de facturas y la gestión de gastos, lo que les permitió centrarse en proyectos más críticos. Además, la automatización redujo los errores humanos, garantizando la coherencia y la eficiencia de las operaciones. Por último, el sistema proporcionó información valiosa y contribuyó a reducir costes mediante la optimización de los procesos de gestión de telecomunicaciones.
- Según un artículo publicado por el PAG, la automatización está transformando la gestión de gastos de telecomunicaciones. Ha optimizado tareas como la monitorización del uso y la conciliación de facturas, lo que resulta especialmente beneficioso para hospitales y organizaciones sanitarias. Las soluciones automatizadas reducen el tiempo y el esfuerzo dedicados a las auditorías, lo que permite obtener ahorros significativos al optimizar el uso de los equipos y los contratos de telecomunicaciones.
Restricción/Desafío
- Preocupaciones persistentes sobre la privacidad y seguridad de los datos
A pesar de los prometedores avances en IA para la agricultura, las persistentes preocupaciones sobre la privacidad y la seguridad de los datos eclipsan estos beneficios. A medida que los sistemas de IA recopilan y analizan grandes cantidades de datos agrícolas sensibles, como el rendimiento de los cultivos, las condiciones del suelo y las operaciones agrícolas, exponen a los agricultores a riesgos significativos. El acceso no autorizado y las filtraciones de estos datos pueden tener graves consecuencias, como la pérdida de propiedad intelectual, la manipulación de información sensible y una mayor vulnerabilidad a los ciberataques. Estos problemas de seguridad socavan la confianza en las tecnologías de IA y dificultan su adopción generalizada.
Por ejemplo
- En agosto de 2023, según el blog publicado por ShardSecure, la agricultura se enfrentó a crecientes preocupaciones sobre la privacidad y seguridad de los datos. Ciberataques, como el ataque de ransomware de 2021 contra JBS Foods, pusieron de manifiesto la vulnerabilidad del sector. Con la agricultura de precisión que genera grandes cantidades de datos y el auge de los dispositivos IoT, los riesgos se han intensificado. El recién creado Centro de Intercambio y Análisis de Información sobre Alimentación y Agricultura se propuso abordar estos problemas. Sin embargo, muchas empresas agropecuarias aún enfrentan dificultades con la seguridad de los datos, el cumplimiento normativo y la protección contra las amenazas relacionadas con la IA. Mejorar las medidas de seguridad puede beneficiar a las empresas al proteger los datos confidenciales y reducir el riesgo de costosas interrupciones.
Impacto posterior a la COVID-19 en el mercado global de inteligencia artificial en la agricultura
El panorama posterior a la COVID-19 ha impactado significativamente el mercado global. Sin embargo, a medida que la economía se recupera gradualmente, se presta mayor atención al desarrollo de infraestructura, lo que ha impulsado un resurgimiento de proyectos. La industria se está adaptando a las nuevas normas con protocolos de seguridad mejorados y tecnologías digitales para optimizar los procesos. La demanda de servicios de telecomunicaciones se está recuperando a medida que los proyectos de construcción recuperan impulso, lo que ofrece oportunidades para que los actores del mercado contribuyan al crecimiento de la infraestructura del país en la era pospandemia.
Desarrollos recientes
Por ejemplo,
- En junio de 2024, TeeJet Technologies lanzó el medidor de flujo electromagnético FM9380-F75, que presenta un diseño innovador sin piezas móviles para un funcionamiento sin mantenimiento, un rendimiento optimizado en todas las condiciones del fluido y una amplia compatibilidad de aplicaciones, lo que beneficia su cartera de productos de agricultura de precisión y mejora la eficiencia operativa.
- En noviembre de 2023, Kubota Corporation presentó el Agri Robo KVT en Agritechnica, lo que marcó un avance significativo en la tecnología de agricultura autónoma. Este tractor mejorado solucionó la escasez de mano de obra, mejoró la seguridad y promovió una agricultura eficiente, beneficiando a Kubota con una mayor competitividad en el mercado y liderazgo en innovación.
Alcance del mercado global de inteligencia artificial en la agricultura
El mercado de la inteligencia artificial en la agricultura se divide en cinco segmentos principales, basados en la oferta, la tecnología, la aplicación, el modo de implementación y el usuario final. El crecimiento de estos segmentos le ayudará a analizar los segmentos de crecimiento más reducidos de las industrias y proporcionará a los usuarios una valiosa visión general del mercado y perspectivas que les ayudarán a tomar decisiones estratégicas para identificar las principales aplicaciones del mercado.
Este informe de investigación clasifica el mercado global de inteligencia artificial en la agricultura en los siguientes segmentos:
OFRENDA
- HARDWARE
- SOFTWARE
- SERVICIOS
En función de la oferta, el mercado está segmentado en hardware, software y servicios.
TECNOLOGÍA
- APRENDIZAJE AUTOMÁTICO (ML)
- VISIÓN POR COMPUTADORA
- PROCESAMIENTO DEL LENGUAJE NATURAL (PNL)
- ROBÓTICA Y AUTOMATIZACIÓN
- OTROS
Sobre la base de la tecnología, el mercado está segmentado en aprendizaje automático (ML), visión artificial, procesamiento del lenguaje natural (NLP), robótica y automatización y otros.
SOLICITUD
- AGRICULTURA DE PRECISIÓN
- SEGUIMIENTO DEL GANADO
- PRONÓSTICO DEL TIEMPO
- GESTIÓN DEL SUELO
- MONITOREO DE LA SALUD DE LOS CULTIVOS
- OPTIMIZACIÓN DE LA CADENA DE SUMINISTRO
- OTROS
Sobre la base de la aplicación, el mercado está segmentado en agricultura de precisión, monitoreo de ganado, pronóstico del tiempo, manejo del suelo, monitoreo de la salud de los cultivos, optimización de la cadena de suministro y otros.
MODO DE DESPLIEGUE
- NUBE
- EN LAS INSTALACIONES
Según el modo de implementación, el mercado está segmentado en nube y local.
USUARIO FINAL
- GRANJAS
- EMPRESAS DE AGROTECNOLOGÍA
- EMPRESAS AGROQUÍMICAS
- INSTITUTOS DE INVESTIGACIÓN
- OTROS
Según el usuario final, el mercado está segmentado en granjas, empresas de tecnología agropecuaria, empresas agroquímicas, institutos de investigación y otros.
Mercado global de inteligencia artificial en la agricultura
El mercado global de inteligencia artificial en la agricultura se divide en cinco segmentos principales, basados en la oferta, la tecnología, la aplicación, el modo de implementación y el usuario final. Los países que abarca el mercado global del Internet de las Cosas (IoT) en la agricultura son: EE. UU., Canadá y México en Norteamérica; Alemania, Francia, Reino Unido, Países Bajos, Suiza, Bélgica, Rusia, Italia, España, Turquía; el resto de Europa; China, Japón, India, Corea del Sur, Singapur, Malasia, Australia, Tailandia, Indonesia, Filipinas; el resto de Asia-Pacífico; Arabia Saudita, Emiratos Árabes Unidos, Sudáfrica, Egipto, Israel; el resto de Oriente Medio y África; Brasil, Argentina y el resto de Sudamérica.
En Norteamérica, Estados Unidos domina como el mayor proveedor de componentes de hardware. Asimismo, en Europa, el Reino Unido domina gracias a sus avances tecnológicos. En Asia-Pacífico, China domina, ya que es el mayor fabricante de componentes de hardware de la región.
La sección de países del informe también presenta factores individuales que impactan el mercado y cambios en la regulación del mercado que impactan las tendencias actuales y futuras. Datos como el análisis de la cadena de valor aguas abajo y aguas arriba, tendencias técnicas, el análisis de las cinco fuerzas de Porter y estudios de caso son algunos de los indicadores utilizados para pronosticar el escenario del mercado en cada país. Además, se considera la presencia y disponibilidad de marcas de APAC y los desafíos que enfrentan debido a la alta o escasa competencia de marcas locales y nacionales, el impacto de los aranceles internos y las rutas comerciales, al proporcionar un análisis de pronóstico de los datos del país.
Análisis del panorama competitivo y la cuota de mercado global de la inteligencia artificial en la agricultura
El panorama competitivo del mercado global de inteligencia artificial en agricultura proporciona información sobre la competencia. Se incluye información general de la empresa, sus estados financieros, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia en Asia-Pacífico y Sudeste Asiático (APAC) y Sudeste Asiático (SEA), plantas de producción, capacidad de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, alcance y alcance de los productos, y dominio de las aplicaciones. Los datos anteriores se refieren únicamente al enfoque de las empresas en el mercado global de inteligencia artificial en agricultura. Algunos de los principales actores que operan en el mercado global de inteligencia artificial en agricultura son: Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation e IBM, entre otros.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

