Informe de análisis del tamaño, la cuota de mercado y las tendencias de las redes neuronales de aprendizaje profundo (DNN) en Europa: panorama general del sector y pronóstico hasta 2032

Solicitud de índiceSolicitud de índice Hable con el analistaHable con el analista Informe de muestra gratuitoInforme de muestra gratuito Consultar antes de comprarConsultar antes Comprar ahoraComprar ahora

Informe de análisis del tamaño, la cuota de mercado y las tendencias de las redes neuronales de aprendizaje profundo (DNN) en Europa: panorama general del sector y pronóstico hasta 2032

  • ICT
  • Upcoming Report
  • Oct 2021
  • Europe
  • 350 Páginas
  • Número de tablas: 220
  • Número de figuras: 60

Europe Deep Learning Neural Networks Dnns Market

Tamaño del mercado en miles de millones de dólares

Tasa de crecimiento anual compuesta (CAGR) :  % Diagram

Chart Image USD 11.50 Billion USD 37.96 Billion 2024 2032
Diagram Período de pronóstico
2025 –2032
Diagram Tamaño del mercado (año base)
USD 11.50 Billion
Diagram Tamaño del mercado (año de pronóstico)
USD 37.96 Billion
Diagram Tasa de crecimiento anual compuesta (CAGR)
%
Diagram Jugadoras de los principales mercados
  • ALYUDA analysisLLC
  • ALPHABET INC.
  • IBM
  • Neural Technologies restricted
  • NEURODIMENSIONInc.

Segmentación del mercado europeo de redes neuronales de aprendizaje profundo (DNN) por tipo de producto (plataformas de software, aceleradores de hardware, servicios), tecnología (CNN, RNN, GAN, transformadores, otros), aplicación (diagnóstico sanitario, vehículos autónomos, servicios financieros, comercio minorista, fabricación, otros), implementación (basada en la nube, local), usuario final (empresas, proveedores de atención sanitaria, fabricantes de automóviles, instituciones financieras, agencias gubernamentales, otros): tendencias de la industria y pronóstico hasta 2032

Redes neuronales de aprendizaje profundo (DNN) Mercado Z

Tamaño del mercado de redes neuronales de aprendizaje profundo (DNN)

  • El tamaño del mercado europeo de redes neuronales de aprendizaje profundo (DNN) se valoró en USD 11.50 mil millones en 2024  y se espera que alcance  los USD 37.96 mil millones para 2032 , con una CAGR del 16,1% durante el período de pronóstico.
  • Este crecimiento sustancial se debe principalmente a la adopción generalizada de tecnologías de inteligencia artificial (IA), el aumento de las inversiones en infraestructura de aprendizaje automático y la creciente demanda de análisis de datos avanzados en sectores como la salud, la automoción, las finanzas y el comercio minorista. La proliferación del big data, sumada a los avances en la capacidad computacional, está acelerando aún más la expansión del mercado.
  • El liderazgo de la región en innovación tecnológica, respaldado por importantes inversiones en investigación y desarrollo (I+D), iniciativas gubernamentales que promueven la adopción de la IA y una sólida presencia de empresas tecnológicas líderes, contribuye de forma clave a la trayectoria ascendente del mercado. Además, la creciente integración de las redes neuronales profundas (DNN) en sistemas autónomos, fabricación inteligente y servicios personalizados al consumidor está impulsando una importante demanda de soluciones de aprendizaje profundo en toda Europa.

Análisis del mercado de redes neuronales de aprendizaje profundo (DNN)

  • Las redes neuronales de aprendizaje profundo (DNN) son algoritmos avanzados de IA diseñados para imitar los procesos cerebrales humanos, lo que permite a las máquinas procesar grandes conjuntos de datos, reconocer patrones y tomar decisiones basadas en datos. Estos sistemas, que incluyen plataformas de software, aceleradores de hardware como GPU y TPU, y servicios profesionales, son cruciales para aplicaciones en diagnósticos sanitarios, vehículos autónomos, modelado financiero, personalización de comercios minoristas y automatización de la fabricación.
  • El mercado se ve impulsado significativamente por el dominio europeo en innovación en IA, ya que la región representó más del 40 % del gasto mundial en I+D en IA en 2023, liderada por Estados Unidos. La rápida adopción de vehículos autónomos, con más de 1,2 millones de vehículos autónomos proyectados en las carreteras alemanas para 2027, impulsa la demanda de redes neuronales profundas (DNN) para el procesamiento de imágenes y datos de sensores en tiempo real.
  • Los avances tecnológicos, como los modelos basados ​​en transformadores y la IA generativa, están mejorando las capacidades de las redes neuronales profundas (DNN), lo que permite aplicaciones en el procesamiento del lenguaje natural (PLN), la visión artificial y el análisis predictivo. Las iniciativas de IA del gobierno alemán, como el Recurso Nacional de Investigación en IA (NAIRR), impulsan la innovación y el crecimiento del mercado.
  • Alemania domina el mercado con una participación de ingresos del 42,1% en 2024, valorada en USD 10.290 millones, impulsada por su sólido ecosistema tecnológico, la presencia de actores clave como NVIDIA y Google e importantes inversiones en infraestructura de IA.
  • Se espera que Francia sea testigo de la tasa de crecimiento más rápida, con una CAGR proyectada del 16,8% entre 2025 y 2032, impulsada por el apoyo del gobierno a la investigación de IA y la creciente adopción en los sectores de la salud y la automoción.
  • Entre los tipos de productos, el segmento de plataformas de software tuvo la mayor participación de mercado del 48,7 % en 2024, atribuido al uso generalizado de marcos de aprendizaje profundo como TensorFlow y PyTorch en aplicaciones empresariales y de investigación.

Alcance del informe y segmentación del mercado europeo de redes neuronales de aprendizaje profundo (DNN)    

Atributos

Perspectivas clave del mercado europeo de redes neuronales de aprendizaje profundo (DNN)

Segmentos cubiertos

  • Por tipo de producto : Plataformas de software, aceleradores de hardware, servicios
  • Por tecnología : Redes neuronales convolucionales (CNN), redes neuronales recurrentes (RNN), redes generativas antagónicas (GAN), transformadores, otras
  • Por aplicación : Diagnóstico de salud, Vehículos autónomos, Servicios financieros, Comercio minorista y electrónico, Automatización de la fabricación, Otros
  • Por implementación : basada en la nube, local
  • Por usuario final : Empresas, proveedores de servicios de salud, fabricantes de automóviles, instituciones financieras, agencias gubernamentales, otros

Países cubiertos

Europa

  • Alemania
  • Francia
  • Reino Unido
  • Países Bajos
  • Suiza
  • Bélgica
  • Rusia
  • Italia
  • España
  • Pavo

Actores clave del mercado

  • NVIDIA Corporation (Estados Unidos)
  • Google LLC (Estados Unidos)
  • Microsoft Corporation (Estados Unidos)
  • Amazon Web Services, Inc. (Estados Unidos)
  • Intel Corporation (Estados Unidos)
  • IBM Corporation (Estados Unidos)
  • Advanced Micro Devices, Inc. (AMD) (Estados Unidos)
  • Meta AI (Estados Unidos)
  • Qualcomm Incorporated (Estados Unidos)
  • Oracle Corporation (Estados Unidos)
  • SAS Institute Inc. (Estados Unidos)
  • Palantir Technologies Inc. (Estados Unidos)
  • H2O.ai (Estados Unidos)
  • DataRobot, Inc. (Estados Unidos)
  • Cerebras Systems Inc. (Estados Unidos)
  • xAI (Estados Unidos)

Oportunidades de mercado

  • Rápida expansión de aplicaciones impulsadas por IA en vehículos autónomos, sistemas de atención médica inteligentes y experiencias de venta minorista personalizadas en toda Europa.
  • Creciente demanda de soluciones DNN basadas en la nube, que permitan una implementación de IA escalable y rentable para empresas y pequeñas empresas.

Conjuntos de información de datos de valor añadido

Además de los conocimientos sobre escenarios de mercado, como valor de mercado, tasa de crecimiento, segmentación, cobertura geográfica y actores principales, los informes de mercado seleccionados por Data Bridge Market Research también incluyen análisis en profundidad de expertos, análisis de precios, análisis de participación de marca, encuesta de consumidores, análisis demográfico, análisis de la cadena de suministro, análisis de la cadena de valor, descripción general de materias primas/consumibles, criterios de selección de proveedores, análisis PESTLE, análisis de Porter y marco regulatorio.

Tendencias del mercado de redes neuronales de aprendizaje profundo (DNN)

IA generativa , modelos transformadores, computación de borde y soluciones de IA sostenibles

  • La adopción de modelos generativos basados ​​en IA y transformadores es una tendencia destacada: más del 30 % de las nuevas implementaciones de DNN en 2024 aprovechan estas tecnologías para aplicaciones en PNL, generación de imágenes y producción de contenido creativo, mejorando las experiencias de los usuarios en el comercio minorista y los medios.
  • El auge de la computación de borde, con el 25 % de las nuevas soluciones DNN en 2024 diseñadas para el procesamiento en el dispositivo, está ganando terreno en los vehículos autónomos y las aplicaciones de IoT, reduciendo la latencia y mejorando la toma de decisiones en tiempo real.
  • Mayor enfoque en soluciones de IA sostenibles, con un 15 % de nuevos aceleradores de hardware en 2024 certificados en eficiencia energética, alineándose con las iniciativas de tecnología verde de Europa y reduciendo el impacto ambiental de la computación de IA.
  • La adopción de plataformas DNN basadas en la nube está creciendo rápidamente, con un aumento del 20% en las tasas de adopción en 2024, impulsada por soluciones escalables y flexibles ofrecidas por proveedores como AWS, Microsoft Azure y Google Cloud.
  • La integración de DNN con ecosistemas de IoT, particularmente en la fabricación inteligente y la atención médica, se está expandiendo, y el 18 % de las nuevas soluciones en 2024 estarán diseñadas para el análisis de datos en tiempo real y la automatización en estos sectores.
  • La creciente demanda de los consumidores de servicios personalizados basados ​​en IA, como sistemas de recomendación en el comercio minorista y diagnósticos predictivos en la atención médica, está impulsando la innovación en aplicaciones DNN en toda Europa.

Dinámica del mercado de redes neuronales de aprendizaje profundo (DNN)

Conductor

Adopción de IA, proliferación de big data, sistemas autónomos, apoyo gubernamental y avances tecnológicos

  • La adopción generalizada de tecnologías de IA en todas las industrias, con una proyección de que el mercado de IA en Europa alcance los USD 200 mil millones para 2027, impulsa una demanda significativa de DNN en aplicaciones como diagnósticos de atención médica, conducción autónoma y modelos financieros.
  • La proliferación de big data, con empresas europeas generando más de 2,5 exabytes de datos diariamente en 2023, impulsa la necesidad de DNN avanzadas para procesar y analizar conjuntos de datos complejos para obtener información útil.
  • La rápida expansión del desarrollo de vehículos autónomos, con más de 1,2 millones de coches autónomos que se proyecta que circularán por las carreteras alemanas en 2027, aumenta la demanda de DNN en el procesamiento de imágenes en tiempo real, la fusión de sensores y los algoritmos de toma de decisiones.
  • Las iniciativas gubernamentales, como la Iniciativa Nacional de IA de Francia y la Estrategia Pancanadiense de IA, brindan financiamiento sustancial y apoyo regulatorio para la investigación de IA, fomentando la innovación y la adopción de DNN en todas las industrias.
  • Los avances en aceleradores de hardware, como las GPU A100 de NVIDIA y las TPU de Google, mejoran el rendimiento de DNN, lo que permite un entrenamiento y una inferencia más rápidos para modelos complejos en centros de datos y dispositivos de borde.
  • La creciente demanda de experiencias de consumidor personalizadas, con el 65% de los minoristas alemanes adoptando sistemas de recomendación impulsados ​​por IA en 2023, impulsa la integración de DNN en aplicaciones minoristas, de comercio electrónico y de servicio al cliente.

Restricción/Desafío

Altos costos de desarrollo, problemas de privacidad de datos, escasez de personal cualificado, consumo energético y complejidades regulatorias .

  • El alto costo de desarrollar e implementar DNN, en particular para aceleradores de hardware personalizados y modelos de IA a gran escala, plantea un desafío para su adopción entre las pequeñas y medianas empresas, lo que limita la escalabilidad del mercado en segmentos sensibles a los costos.
  • Las preocupaciones sobre la privacidad de los datos, impulsadas por regulaciones como la Ley de Privacidad del Consumidor de California (CCPA) y la Ley de Protección de Información Personal y Documentos Electrónicos (PIPEDA) de Francia, aumentan los costos de cumplimiento y la complejidad para los proveedores de DNN que manejan datos confidenciales.
  • La escasez de habilidades en IA y experiencia en aprendizaje profundo, con un déficit proyectado de 250.000 profesionales de IA en Europa para 2026, plantea desafíos para la implementación, el mantenimiento y la innovación en tecnologías DNN.
  • El alto consumo de energía de los procesos de entrenamiento e inferencia de DNN, con modelos a gran escala que consumen hasta 500 MWh al año, genera preocupaciones sobre la sostenibilidad y los costos operativos, particularmente en los centros de datos.
  • La rápida obsolescencia tecnológica, impulsada por los continuos avances en algoritmos de IA y hardware, presiona a las empresas a invertir fuertemente en I+D, lo que reduce la rentabilidad de los actores más pequeños y limita la innovación a largo plazo.
  • Las complejidades regulatorias, como los diferentes marcos de gobernanza de IA en Alemania y Francia, crean desafíos para la implementación y el cumplimiento de DNN estandarizados, lo que aumenta los costos operativos para los proveedores.

Alcance del mercado europeo de redes neuronales de aprendizaje profundo (DNN)

El mercado europeo de redes neuronales de aprendizaje profundo (DNN) está segmentado según el tipo de producto, la tecnología, la aplicación, la implementación y el usuario final para proporcionar una comprensión integral de la dinámica del mercado y las oportunidades de crecimiento.

  • Por tipo de producto

Según el tipo de producto, el mercado se segmenta en plataformas de software, aceleradores de hardware y servicios. El segmento de plataformas de software dominó con una participación en los ingresos del 48,7 % en 2024, valorada en 6.090 millones de dólares, impulsada por el uso generalizado de frameworks como TensorFlow, PyTorch y Keras en aplicaciones empresariales y de investigación. Se prevé que el segmento de servicios crezca a la tasa de crecimiento anual compuesta (TCAC) más rápida, del 16,5 %, entre 2025 y 2032, impulsado por la demanda de servicios de consultoría e implementación de IA.

Por tecnología

Según la tecnología, el mercado se segmenta en redes neuronales convolucionales (CNN), redes neuronales recurrentes (RNN), redes generativas antagónicas (GAN), transformadores y otros. El segmento de las CNN tuvo la mayor participación, con un 40,2 %, en 2024, impulsado por su uso en reconocimiento de imágenes y vehículos autónomos. Se espera que el segmento de los transformadores crezca a la tasa de crecimiento anual compuesta (TCAC) más rápida, del 17,1 %, entre 2025 y 2032, impulsado por los avances en PLN y la IA generativa.

Por aplicación

Según su aplicación, el mercado se segmenta en diagnósticos sanitarios, vehículos autónomos, servicios financieros, comercio minorista y electrónico, automatización de la fabricación, entre otros. El segmento de diagnósticos sanitarios representó la mayor cuota de ingresos, con un 35,6 %, en 2024, impulsado por la imagenología médica y el diagnóstico predictivo basados ​​en IA. Se prevé que el segmento de vehículos autónomos crezca a la tasa de crecimiento anual compuesta (TCAC) más rápida, del 18,3 %, entre 2025 y 2032, impulsado por el desarrollo de vehículos autónomos.

Por implementación

En función de la implementación, el mercado se segmenta en basado en la nube y local. El segmento basado en la nube representó una participación significativa del 60,8 % en 2024, impulsado por las soluciones escalables de AWS, Azure y Google Cloud. Se espera que el segmento basado en la nube crezca a la tasa de crecimiento anual compuesta (TCAC) más rápida, del 16,9 %, entre 2025 y 2032, impulsado por la demanda de una implementación de IA flexible y rentable.

Por el usuario final


En función del usuario final, el mercado se segmenta en empresas, proveedores de servicios de salud, fabricantes de automóviles, instituciones financieras, agencias gubernamentales y otros. El segmento empresarial dominó el mercado con una participación en los ingresos del 42,1 % en 2024, impulsado por la adopción de la IA en el análisis de negocios. Se espera que el segmento de proveedores de servicios de salud crezca a la tasa de crecimiento anual compuesta (TCAC) más rápida, del 17,4 %, entre 2025 y 2032, impulsado por el diagnóstico basado en IA y la medicina personalizada.

Análisis regional del mercado de redes neuronales de aprendizaje profundo (DNN)

Perspectivas del mercado de redes neuronales de aprendizaje profundo (DNN) en Alemania

Alemania lideró el mercado con una destacada participación en los ingresos del 42,1 % en 2024, valorada en 10 290 millones de dólares, impulsada por su sólido ecosistema tecnológico, la presencia de actores clave como NVIDIA, Google y Microsoft, y las importantes inversiones en infraestructura de IA. El liderazgo del país en vehículos autónomos, IA sanitaria y servicios financieros, sumado al apoyo gubernamental a través de la Iniciativa Nacional de IA, consolida su dominio.

Perspectivas del mercado de redes neuronales de aprendizaje profundo (DNN) en Francia

Se prevé que Francia crezca a la tasa de crecimiento anual compuesta (TCAC) más rápida, del 16,8 %, entre 2025 y 2032, impulsada por iniciativas gubernamentales como la Estrategia Pancanadiense de IA, que apoya la investigación y la adopción de IA en los sectores sanitario, automovilístico y manufacturero. Francia representó el 12,1 % del mercado en 2024, con una creciente adopción de redes neuronales profundas (DNN) en ciudades inteligentes y diagnósticos médicos.

Perspectiva del mercado de redes neuronales de aprendizaje profundo (DNN) en el Reino Unido

El Reino Unido mantuvo una cuota de mercado del 5,6 % en 2024, impulsada por el crecimiento de sus sectores automotriz y manufacturero, que adoptan cada vez más la IA para la automatización y el control de calidad. Las iniciativas gubernamentales para promover la Industria 4.0 y las alianzas con empresas tecnológicas locales impulsan el crecimiento del mercado en el Reino Unido.

Cuota de mercado de las redes neuronales de aprendizaje profundo (DNN)

  • La industria de redes neuronales de aprendizaje profundo (DNN) está liderada principalmente por empresas bien establecidas, entre las que se incluyen:
  • NVIDIA Corporation (Estados Unidos)
  • Google LLC (Estados Unidos)
  • Microsoft Corporation (Estados Unidos)
  • Amazon Web Services, Inc. (Estados Unidos)
  • Intel Corporation (Estados Unidos)
  • IBM Corporation (Estados Unidos)
  • Advanced Micro Devices, Inc. (AMD) (Estados Unidos)
  • Meta AI (Estados Unidos)
  • Qualcomm Incorporated (Estados Unidos)
  • Oracle Corporation (Estados Unidos)
  • SAS Institute Inc. (Estados Unidos)
  • Palantir Technologies Inc. (Estados Unidos)
  • H2O.ai (Estados Unidos)
  • DataRobot, Inc. (Estados Unidos)
  • Cerebras Systems Inc. (Estados Unidos)
  • xAI (Estados Unidos)

Últimos avances en el mercado europeo de redes neuronales de aprendizaje profundo (DNN)

  • En octubre de 2023, NVIDIA presentó la GPU H200 Tensor Core, su procesador de nueva generación diseñado para acelerar el entrenamiento y la inferencia de redes neuronales profundas (DNN). El H200 ofrece hasta un 20 % más de rendimiento en cargas de trabajo de IA generativa en comparación con sus predecesores. Está optimizado para modelos de IA a gran escala, como los de transformadores y difusión, cruciales para aplicaciones de PLN y visión artificial. Los principales proveedores de la nube, como AWS y Azure, ya han adoptado el H200 para impulsar sus plataformas de IA, mejorando las capacidades tanto en entornos empresariales como de investigación.
  • En enero de 2024, Google Cloud lanzó Vertex AI Vision, una nueva incorporación a su plataforma Vertex AI, enfocada en el análisis de imágenes y videos en tiempo real mediante aprendizaje profundo. Esta solución en la nube es compatible con casos de uso en comercio minorista (p. ej., caja inteligente, seguimiento de inventario) y fabricación (p. ej., detección de defectos). Ofrece una mejora del 15 % en la velocidad de procesamiento, gracias a la optimización de la implementación de modelos y el rendimiento de inferencia. Vertex AI Vision se integra fácilmente con los servicios existentes de Google Cloud, lo que ayuda a los desarrolladores a escalar aplicaciones de visión artificial de forma más rápida y eficiente.
  • En marzo de 2024, Microsoft amplió su colaboración con OpenAI al integrar modelos avanzados basados ​​en transformadores en la plataforma de IA de Azure. Esta integración mejora significativamente las capacidades de procesamiento del lenguaje natural (PLN) para usuarios empresariales. Las aplicaciones incluyen la atención al cliente automatizada, la traducción de idiomas, la generación de contenido y el resumen de documentos. Más de 100 empresas en ALEMANIA ya han adoptado estas capacidades, aprovechando la infraestructura de Azure para implementar la automatización inteligente a gran escala.
  • En abril de 2024, xAI de Elon Musk presentó una versión mejorada de su plataforma Grok, integrando redes neuronales profundas (DNN) más avanzadas para optimizar el razonamiento analítico y la interpretación de datos. El sistema Grok actualizado está diseñado para aplicaciones empresariales en áreas como el modelado predictivo, la inteligencia empresarial y la previsión estratégica. Centrado en la información en tiempo real y un mejor rendimiento, Grok ahora es una potente herramienta para la toma de decisiones basada en datos y la implementación de IA a nivel empresarial.
  • En junio de 2024, Intel lanzó el acelerador de IA Gaudi 3, diseñado para ofrecer entrenamiento de DNN de alto rendimiento y bajo consumo. En comparación con su predecesor, Gaudi 3 reduce el consumo de energía en un 25 %, a la vez que mejora el ancho de banda de la memoria y el rendimiento computacional. El chip se posiciona como una solución rentable para el entrenamiento e inferencia de IA en entornos de centros de datos a gran escala. Su adopción ya ha comenzado entre los principales proveedores de infraestructura de datos de toda Europa.

SKU-

Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo

  • Panel de análisis de datos interactivo
  • Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
  • Acceso de analista de investigación para personalización y consultas
  • Análisis de la competencia con panel interactivo
  • Últimas noticias, actualizaciones y análisis de tendencias
  • Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Solicitud de demostración

Metodología de investigación

La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.

La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.

Personalización disponible

Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados ​​en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

Preguntas frecuentes

El mercado se segmenta según Segmentación del mercado europeo de redes neuronales de aprendizaje profundo (DNN) por tipo de producto (plataformas de software, aceleradores de hardware, servicios), tecnología (CNN, RNN, GAN, transformadores, otros), aplicación (diagnóstico sanitario, vehículos autónomos, servicios financieros, comercio minorista, fabricación, otros), implementación (basada en la nube, local), usuario final (empresas, proveedores de atención sanitaria, fabricantes de automóviles, instituciones financieras, agencias gubernamentales, otros): tendencias de la industria y pronóstico hasta 2032 .
El tamaño del Informe de análisis del tamaño, la cuota de mercado se valoró en 11.50 USD Billion USD en 2024.
Se prevé que el Informe de análisis del tamaño, la cuota de mercado crezca a una CAGR de 16.1% durante el período de pronóstico de 2025 a 2032.
Los principales actores del mercado incluyen ALYUDA analysisLLC, ALPHABET INC., IBM, Neural Technologies restricted, NEURODIMENSIONInc., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm TechnologiesInc., Intel Corporation, Amazon internet ServicesInc., Microsoft, GMDH LLC., Sensory INC., Ward Systems clusterInc., Xilinx Inc., Starmind .
Testimonial