Global Predictive Maintenance Market
Marktgröße in Milliarden USD
CAGR : %
Prognosezeitraum |
2024 –2031 |
Marktgröße (Basisjahr) | USD 6.72 Billion |
Marktgröße (Prognosejahr) | USD 63.09 Billion |
CAGR |
|
Wichtige Marktteilnehmer |
|
>Global Predictive Maintenance Market Segmentation, By Components (Solution and Services), Deployment Mode (Cloud and On-Premise), Organization Size (Large Enterprises and Small and Medium-Sized Enterprises), Vertical (Manufacturing, Energy and Utilities, Transportation, Government, Healthcare, Aerospace and Defense, and Others), Stakeholder (MRO, OEM/ODM, and Technology Integrators) – Industry Trends and Forecast to 2031
Predictive Maintenance Market Analysis
Predictive maintenance has emerged as a transformative approach in industrial operations, leveraging advancements in data analytics, IoT, and AI to improve equipment reliability and reduce downtime. Unlike traditional preventive maintenance, which follows set schedules, predictive maintenance relies on real-time data to assess equipment health and forecast potential failures. This shift enables companies to act only when necessary, optimizing resources and extending asset life. Advancements in IoT sensors and machine learning algorithms are crucial to predictive maintenance's success, allowing continuous monitoring of equipment and early detection of performance anomalies. Sensors gather real-time data on parameters such as temperature, vibration, and pressure, which is then analyzed using machine learning to identify patterns indicating wear or malfunction. Cloud computing further enhances this process, enabling data to be aggregated, processed, and analyzed at scale, providing valuable insights across large fleets of assets. Industries from manufacturing and energy to transportation have adopted predictive maintenance, seeing reduced maintenance costs and enhanced operational efficiency. As technologies continue to evolve, predictive maintenance is expected to become more accurate, scalable, and accessible, paving the way for smarter, data-driven asset management across diverse sectors.
Predictive Maintenance Market Size
The global predictive maintenance market size was valued at USD 6.72 billion in 2023 and is projected to reach USD 63.09 billion by 2031, with a CAGR of 32.30% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.
Predictive Maintenance Market Trends
“Rise of Cloud-Based Predictive Maintenance Solutions”
Der Markt für vorausschauende Wartung wächst rasant. Dies wird durch die Integration von IoT, KI und Big-Data-Analysen vorangetrieben, um die Anlagenleistung zu verbessern und Ausfallzeiten zu reduzieren. Ein wichtiger Trend, der diesen Markt prägt, ist der Aufstieg cloudbasierter Lösungen für vorausschauende Wartung. Diese Lösungen ermöglichen es Unternehmen, riesige Mengen an Gerätedaten in Echtzeit zu sammeln und zu analysieren, oft von entfernten Standorten aus. So können Unternehmen Ausfälle leichter vorhersagen, bevor sie auftreten. So hat General Electric beispielsweise cloudbasierte vorausschauende Wartung in seine Industrieanlagen integriert, sodass Kunden den Zustand der Maschinen kontinuierlich überwachen und datengesteuerte Wartungsentscheidungen treffen können. Dieser Ansatz verbessert die Betriebseffizienz und senkt die Wartungskosten. Da die Industrie weiterhin cloudbasierte Plattformen einführt, wird der Markt für vorausschauende Wartung voraussichtlich wachsen, da Unternehmen nach skalierbaren, flexiblen Lösungen suchen, um die Produktivität zu steigern und die Lebensdauer von Anlagen zu verlängern.
Berichtsumfang und Marktsegmentierung für vorausschauende Wartung
Eigenschaften |
Wichtige Markteinblicke zur vorausschauenden Wartung |
Abgedeckte Segmente |
|
Abgedeckte Länder |
USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika |
Wichtige Marktteilnehmer |
Microsoft (USA), IBM (USA), SAP (Deutschland), SAS Institute Inc. (USA), Software GmbH (Deutschland), Cloud Software Group, Inc. (USA), Hewlett Packard Enterprise Development LP (USA), Altair Engineering Inc. (USA), Splunk LLC (USA), Oracle (USA), Google (USA), Amazon Web Services, Inc. (USA), General Electric Company (USA), Schneider Electric (Frankreich), Hitachi, Ltd. (Japan), PTC (USA) und DINGO Software Pty. Ltd (Australien) |
Marktchancen |
|
Wertschöpfende Dateninfosets |
Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse. |
Marktdefinition für vorausschauende Wartung
Softwaresysteme für die vorausschauende Wartung werden verwendet, um die Leistung und den Zustand von Geräten oder Maschinen während des Betriebs zu überwachen. Diese Software nutzt fortschrittliche Techniken, um Wartungsarbeiten zu planen, bevor Fehler auftreten, und so die Zuverlässigkeit der Geräte sicherzustellen. Software für die vorausschauende Wartung kann in verschiedenen Bereichen eingesetzt werden, beispielsweise zum Erkennen von Dreiphasen-Leistungsungleichgewichten durch harmonische Verzerrung, zum Identifizieren von Motorkapazitätsspitzen und zum Lokalisieren von Überhitzungsproblemen aufgrund fehlerhafter Lager.
Marktdynamik für vorausschauende Wartung
Treiber
- Zunehmende Nutzung neuer Technologien zur Gewinnung wertvoller Erkenntnisse
Kontinuierliche Fortschritte in den Bereichen Big Data , Maschine-zu-Maschine-Kommunikation (M2M) und künstliche Intelligenz (KI) treiben das Wachstum des Marktes für vorausschauende Wartung voran, indem sie tiefere Erkenntnisse aus den riesigen Datenmengen ermöglichen, die von IoT-Geräten generiert werden. Diese Geräte sammeln enorme Datenmengen von Sensoren, Kameras und anderen verbundenen Quellen, die in umsetzbare Informationen umgewandelt werden müssen, um einen echten Nutzen zu haben. Techniken zur Verarbeitung von Big Data und zur Datenvisualisierung ermöglichen es Benutzern, Erkenntnisse durch Stapelverarbeitung und Offline-Analyse zu gewinnen, während die Echtzeit-Dateninterpretation aus Skalierbarkeitsgründen zunehmend auf Automatisierung angewiesen ist. KI spielt eine entscheidende Rolle, indem sie die riesigen Datenmengen analysiert, die im gesamten IoT-Ökosystem generiert werden, und diese in wertvolle Erkenntnisse umwandelt, die Unternehmen für zeitnahe Entscheidungen nutzen können. Durch die Integration von KI in ihre Analysemodelle können Unternehmen die Dateninterpretation automatisieren und in Echtzeit umsetzbare Erkenntnisse aus IoT-Datenströmen gewinnen, wodurch ein leistungsstarker Treiber für Lösungen zur vorausschauenden Wartung in allen Branchen entsteht.
- Weltweit steigende Zahl von Branchen treibt Nachfrage und Angebot an
Die wachsende Zahl von Industrien weltweit führt zu einer größeren Nachfrage und einem größeren Angebot, insbesondere in Schwellenländern, in denen die Industrialisierung rasant voranschreitet. Während Länder wie Indien, China und Brasilien ihre Fertigungs- und Technologiesektoren weiter ausbauen, wächst der Bedarf an fortschrittlichen Lösungen wie der vorausschauenden Wartung. In Indien beispielsweise setzen die Automobil- und Fertigungsindustrie Technologien zur vorausschauenden Wartung ein, um die Betriebseffizienz zu verbessern und Ausfallzeiten zu reduzieren, was die Nachfrage nach solchen Lösungen ankurbelt. Dieser Anstieg der industriellen Aktivität in Schwellenländern ist ein bedeutender Markttreiber, da Unternehmen nach skalierbaren, kostengünstigen Tools suchen, um die wachsende Infrastruktur zu verwalten und einen zuverlässigen Betrieb sicherzustellen. Die erweiterte industrielle Basis in diesen Regionen führt zu einer erhöhten Nachfrage nach Software und Dienstleistungen zur vorausschauenden Wartung und bietet den Anbietern erhebliche Möglichkeiten, diesen steigenden Bedarf zu decken.
Gelegenheiten
- Zunehmende Integration des Internet der Dinge (IoT)
Die Integration des Internets der Dinge (IoT) in Lösungen zur vorausschauenden Wartung hat die Marktchancen erheblich erweitert, da sie eine kontinuierliche Echtzeitüberwachung von Geräten und Maschinen ermöglicht. IoT-Geräte wie intelligente Sensoren und intelligente Messgeräte erfassen riesige Datenmengen zu Parametern wie Temperatur, Vibration, Druck und Luftfeuchtigkeit. Diese Daten werden dann mithilfe fortschrittlicher Algorithmen und maschineller Lernmodelle analysiert, um potenzielle Geräteausfälle vorherzusagen, bevor sie auftreten. In der Fertigungsindustrie können beispielsweise IoT-gestützte Systeme zur vorausschauenden Wartung abnormale Vibrationen in Maschinen erkennen und Wartungsteams alarmieren, damit diese Reparaturen durchführen können, bevor ein Ausfall die Produktion unterbricht. Die zunehmende Verbreitung des IoT in Branchen wie der Automobil-, Energie- und Fertigungsindustrie hat einen wachsenden Markt für IoT-basierte Lösungen zur vorausschauenden Wartung geschaffen. Diese Nachfrage wird noch verstärkt durch die Fähigkeit des IoT, ungeplante Ausfallzeiten zu reduzieren, die Lebensdauer der Geräte zu verlängern und Reparaturkosten zu minimieren, was das IoT zu einem wichtigen Treiber des Marktes für vorausschauende Wartung macht. Da immer mehr Unternehmen IoT-Geräte und vernetzte Systeme einsetzen, wird der Bedarf an robusten, skalierbaren Lösungen zur vorausschauenden Wartung weiter steigen, was für Technologieanbieter in diesem Bereich eine lukrative Wachstumschance darstellt.
- Kostensenkung wird immer wichtiger
Die vorausschauende Wartung bietet Unternehmen eine überzeugende Möglichkeit zur Kostensenkung, indem sie unerwartete Geräteausfälle minimiert, Ersatzteilbestände optimiert und Arbeitskosten senkt. Durch die Nutzung datengesteuerter Erkenntnisse zur Vorhersage und Verhinderung von Geräteausfällen können Unternehmen kostspielige Ausfallzeiten und die teuren Reparaturen vermeiden, die häufig mit unerwarteten Ausfällen verbunden sind. Im Transportsektor beispielsweise können vorausschauende Wartungssysteme vorhersagen, wann die Motorteile eines Fahrzeugs verschleißen werden, sodass Unternehmen Reparaturen zu einem geeigneten Zeitpunkt planen und kostspielige, störende Ausfälle verhindern können. In ähnlicher Weise hilft die vorausschauende Wartung in der Fertigung dabei, den Ersatzteilbestand zu optimieren, indem sichergestellt wird, dass Teile nur bei Bedarf bestellt werden, wodurch Über- oder Unterbestände vermieden werden. Darüber hinaus reduziert sie den Bedarf an Notfallreparaturteams und Überstunden, da die Wartung außerhalb der Spitzenzeiten geplant werden kann, wodurch Betriebskosten gespart werden. Dieses Kosteneinsparungspotenzial ist eine bedeutende Marktchance, da Unternehmen branchenübergreifend zunehmend nach Möglichkeiten suchen, die Betriebskosten zu senken und gleichzeitig ein hohes Maß an Effizienz und Leistung aufrechtzuerhalten. Mit diesen finanziellen Vorteilen steigt die Nachfrage nach Lösungen zur vorausschauenden Wartung weiter an und bietet Lösungsanbietern auf dem Markt eine starke Wachstumschance.
Einschränkungen/Herausforderungen
- Mangel an qualifizierten Arbeitskräften
Die Implementierung KI-basierter IoT-Technologien und fortschrittlicher Softwaresysteme erfordert qualifizierte Mitarbeiter, die in der Bedienung und Verwaltung dieser neuen und verbesserten Systeme geschult sind. In der Industrie herrscht jedoch ein Mangel an gut ausgebildeten Fachkräften mit dem erforderlichen Fachwissen. Da Hersteller weltweit Systeme zur vorausschauenden Wartung einführen, steigt die Nachfrage nach qualifizierten Arbeitskräften. Unternehmen müssen Fachwissen in Bereichen wie Cybersicherheit , Vernetzung und Betrieb entwickeln, um IoT-Daten effektiv zur Prognose von Problemen, Vermeidung von Fehlern, Optimierung des Betriebs und Verbesserung der Produktentwicklung zu nutzen. Darüber hinaus wird erwartet, dass die Integration von KI und maschinellem Lernen (ML) in IoT-Systeme eine Schlüsselrolle bei der Senkung der Betriebskosten spielt. Mit der Einbindung von KI in das IoT entsteht ein zunehmender Bedarf an Teams von Datenanalysten, die auf die Verarbeitung und Interpretation der riesigen Mengen an von IoT-Geräten generierten Daten spezialisiert sind, um umsetzbare Erkenntnisse zu liefern.
- Bedarf an regelmäßiger Wartung und System-Upgrades
Hohe Kosten und Investitionsanforderungen stellen im Markt für vorausschauende Wartung eine erhebliche Herausforderung dar, da Unternehmen bei der Implementierung fortschrittlicher Lösungen für vorausschauende Wartung häufig mit erheblichen finanziellen Hürden konfrontiert sind. Die Integration hochentwickelter Technologien wie biometrischer Systeme und künstlicher Intelligenz kann erhebliche Anfangsinvestitionen in Software und Hardware nach sich ziehen. Beispielsweise kann die unternehmensweite Einführung eines umfassenden Systems für vorausschauende Wartung Hunderttausende von Dollar kosten, was für kleinere Unternehmen oder solche mit knappen Budgets unerschwinglich sein kann. Darüber hinaus können die laufende Wartung und Aktualisierung dieser Systeme die finanzielle Belastung erhöhen und es für Unternehmen schwierig machen, Ressourcen effektiv zu verteilen. Daher stellen die mit Technologien für vorausschauende Wartung verbundenen hohen Kosten eine erhebliche Marktherausforderung dar, die Anbieter überwinden müssen, um eine breitere Einführung in unterschiedlichsten Sektoren zu ermöglichen.
Dieser Marktbericht enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt zu erhalten, wenden Sie sich an Data Bridge Market Research, um einen Analystenbericht zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Marktumfang für vorausschauende Wartung
Der Markt ist nach Komponenten, Bereitstellungsmodus, Unternehmensgröße, Branche und Interessenvertreter segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.
Komponente
- Lösungen
- Integriert
- Standalone
- Service
- Verwaltete Dienste
- Professionelle Dienstleistungen
- Systemintegration
- Support und Wartung
- Beratung
Systemintegration
- Support und Wartung
- Beratung
Bereitstellungsmodus
- Vor Ort
- Wolke
- Öffentliche Cloud
- Private Cloud
- Hybrid Cloud
Größe der Organisation
- Große Unternehmen
- Kleine und mittlere Unternehmen (KMU)
Vertikal
- Regierung und Verteidigung
- Herstellung
- Energie und Versorgung
- Transport und Logistik
- Gesundheitswesen und Biowissenschaften
Interessensgruppe
- Wartung und Instandhaltung
- OEM/ODM
- Technologieintegratoren
Regionale Analyse des Marktes für vorausschauende Wartung
Der Markt wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Komponente, Bereitstellungsmodus, Organisationsgröße, Branche und Interessengruppe bereitgestellt, wie oben angegeben.
The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
North America is expected to dominate the predictive maintenance market, driven by significant technological advancements in the region. The increasing number of players offering prognostic maintenance solutions is also anticipated to contribute to the market's growth. As more businesses adopt these solutions, the demand for predictive maintenance technologies will rise, further boosting the market. Additionally, the presence of leading companies and continuous innovations in the region will support continued market expansion.
Asia Pacific is projected to experience steady growth in the adoption of predictive maintenance, driven by emerging economies in the region. Technological advancements and the increasing need for businesses to optimize asset performance through efficient maintenance strategies are key factors fueling this growth. As industries strive to enhance productivity and reduce downtime, predictive maintenance technologies are becoming essential. Moreover, the region's focus on embracing cutting-edge innovations will further accelerate the integration of predictive maintenance solutions.
The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Predictive Maintenance Market Share
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Predictive Maintenance Market Leaders Operating in the Market Are:
- Microsoft (U.S.)
- IBM (U.S.)
- SAP (Germany)
- SAS Institute Inc. (U.S.)
- Software GmbH (Germany)
- Cloud Software Group, Inc. (U.S.)
- Hewlett Packard Enterprise Development LP (U.S.)
- Altair Engineering Inc. (U.S.)
- Splunk LLC (U.S.)
- Oracle (U.S.)
- Google (U.S.)
- Amazon Web Services, Inc. (U.S.)
- General Electric Company (U.S.)
- Schneider Electric (France)
- Hitachi, Ltd. (Japan)
- PTC (U.S.)
- DINGO Software Pty. Ltd (Australia)
Latest Developments in Predictive Maintenance Market
- In August 2023, Honeywell, a U.S.-based company, launched its Versatilis transmitters, a solution designed for condition-based monitoring of rotating equipment across various industries
- In June 2023, Accenture acquired Nextira, a premier Amazon Web Services (AWS) partner, to enhance its engineering capabilities within Accenture Cloud First. This acquisition will enable Accenture to deliver predictive analytics, cloud-native innovations, and immersive experiences to clients, leveraging AWS solutions to provide comprehensive cloud capabilities
- In May 2023, Cisco Systems and NTT, a telecom infrastructure services provider, partnered to develop solutions that deliver real-time data insights, improved decision-making, and enhanced security. Their collaboration focuses on predictive maintenance, supply chain management, and asset tracking
- In June 2022, Siemens, based in the U.K., acquired Senseye to strengthen its portfolio in predictive maintenance and asset intelligence
- In June 2022, Microsoft, headquartered in the U.S., partnered with Schneider Electric, based in France, to introduce advanced maintenance solutions that enhance energy management, asset performance, and operational efficiency
- In July 2021, Schneider Electric launched EcoStruxure TriconexTM Safety View, a pioneering software for bypass and alarm management that is dual-certified for safety and cybersecurity. This solution allows operators to monitor bypass status and critical alarms to maintain safe operations under high-risk conditions
- In May 2021, SAS Institute released SAS Viya, its powerful cloud-native platform for data management and analytics, aimed at empowering data-driven success through new integrated solutions for data operations
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.