Globaler Markt für intelligente Prozessautomatisierung durch maschinelles Lernen (ML), nach Komponente (Lösungen, Dienste), Typ (strukturiert, unstrukturiert), Technologie (Verarbeitung natürlicher Sprache, maschinelles und tiefes Lernen, neuronale Netzwerke, virtuelle Agenten, Mini-Bots, Computer Vision, sonstige), Organisationsgröße (Großunternehmen, KMU), Anwendung (IT-Betrieb, Contact-Center-Management, Geschäftsprozessautomatisierung, Anwendungsmanagement, Content-Management, Sicherheitsmanagement, sonstige), Geschäftsfunktion (Informationstechnologie, Finanzen und Buchhaltung, Personalwesen, Betrieb und Lieferkette), Bereitstellungsmodus (vor Ort, Cloud), Endbenutzer (Bankwesen, Finanzdienstleistungen, Versicherungen (BFSI), Telekommunikation und IT, Transport und Logistik, Medien und Unterhaltung, Einzelhandel und E-Commerce, Fertigung, Gesundheitswesen und Biowissenschaften, sonstige) – Branchentrends und Prognose bis 2030.
Marktanalyse und Größe für intelligente Prozessautomatisierung mit maschinellem Lernen (ML)
Die Notwendigkeit, die Unternehmensproduktivität zu steigern, und die zunehmende Einführung neuer Technologien in einer Vielzahl von Branchen werden voraussichtlich das Marktwachstum im Bereich der intelligenten Prozessautomatisierung durch maschinelles Lernen (ML) vorantreiben. Intelligente Prozessautomatisierungslösungen bieten Benutzern hochmoderne Tools und anpassbare Workflows, mit denen sie schneller und mit mehr Wissen Entscheidungen treffen können. Diese Lösungen verwalten Schnittstellen und beseitigen Engpässe in Workflow-Systemen. Es wird erwartet, dass dieser Faktor dem Markt in den kommenden Jahren Schwung verleihen wird.
Data Bridge Market Research analysiert, dass der Markt für intelligente Prozessautomatisierung im Bereich maschinelles Lernen (ML), der im Jahr 2022 auf 13,6 Milliarden US-Dollar geschätzt wurde, bis 2030 41,03 Milliarden US-Dollar erreichen wird und im Prognosezeitraum von 2023 bis 2030 mit einer durchschnittlichen jährlichen Wachstumsrate von 14,80 % wachsen wird. Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.
Marktumfang und -segmentierung für intelligente Prozessautomatisierung mit maschinellem Lernen (ML)
Berichtsmetrik |
Einzelheiten |
Prognosezeitraum |
2023 bis 2030 |
Basisjahr |
2022 |
Historische Jahre |
2021 (Anpassbar auf 2015 – 2020) |
Quantitative Einheiten |
Umsatz in Mrd. USD, Volumen in Einheiten, Preise in USD |
Abgedeckte Segmente |
Komponente (Lösungen, Dienste), Typ (strukturiert, unstrukturiert), Technologie (Verarbeitung natürlicher Sprache, maschinelles und tiefes Lernen, neuronale Netzwerke, virtuelle Agenten, Mini-Bots, Computer Vision, andere), Unternehmensgröße (Großunternehmen, KMU), Anwendung (IT-Betrieb, Contact-Center-Management, Automatisierung von Geschäftsprozessen, Anwendungsmanagement, Inhaltsmanagement, Sicherheitsmanagement, andere), Geschäftsfunktion (Informationstechnologie, Finanz- und Rechnungswesen, Personalwesen, Betrieb und Lieferkette), Bereitstellungsmodus (vor Ort, Cloud), Endbenutzer (Bankwesen, Finanzdienstleistungen, Versicherungen (BFSI), Telekommunikation und IT, Transport und Logistik, Medien und Unterhaltung, Einzelhandel und E-Commerce, Fertigung, Gesundheitswesen und Biowissenschaften, andere) |
Abgedeckte Länder |
USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) im Asien-Pazifik-Raum (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil des Nahen Ostens und Afrikas (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika. |
Abgedeckte Marktteilnehmer |
Automation Anywhere, Inc. (USA), UiPath (USA), Blue Prism Limited (Großbritannien), Pegasystems Inc. (USA), AntWorks (Singapur), NICE (Israel), Kofax Inc. (USA), SAP SE (Deutschland), AutomationEdge (USA), Larc AI (Pty) Ltd. (Südafrika), Autologyx (Großbritannien), Sanbot Innovation Technology., Ltd (China), Cinnamon Inc. (Japan), Wipro (Indien), Xerox Corporation (USA), TATA Consultancy Services Limited. (Indien), IBM (USA), Atos SE (Frankreich), Capgemini (Frankreich), Accenture (Irland) |
Marktchancen |
|
Marktdefinition
Softwareanwendungen können jetzt durch ML, ein Teilgebiet der KI, genauere Vorhersagen treffen. Algorithmen des maschinellen Lernens prognostizieren neue Ausgabewerte unter Verwendung historischer Daten als Eingabe. Technologien der künstlichen Intelligenz (KI) werden in der kognitiven Prozessautomatisierung verwendet, um kognitive Prozesse wie logisches Denken, maschinelles Lernen und Verarbeitung natürlicher Sprache zu beschleunigen. Dank der kognitiven Prozessautomatisierung können diese Aufgaben sowohl von Menschen als auch von Maschinen schneller und einfacher erledigt werden.
Marktdynamik für intelligente Prozessautomatisierung durch maschinelles Lernen (ML)
Treiber
- Die zunehmende Nutzung von RPA treibt den Markt an
Unternehmen nutzen RPA-Technologie, um manuelle Dateneingabeaufgaben zu automatisieren und so menschliche Arbeitskraft zu vermeiden. Der IPA-Workflow kombiniert kognitives Lernen, RPA, ML und KI. Mit zunehmender Popularität von RPA steigt daher auch die Nachfrage nach IPA. RPA bietet Effektivität und Schnelligkeit. Künstliche Intelligenz (KI) wird zur Automatisierung hinzugefügt, um Daten auf eine Weise zu analysieren, die ein Mensch nicht könnte, Muster in Daten zu erkennen und aus früheren Entscheidungen zu lernen, um zunehmend klügere Entscheidungen zu treffen. IPA reduziert den Zeitaufwand für Aufgaben, indem es die Notwendigkeit menschlicher Dateneingabe, Informationsvalidierung und Dokumentensortierung überflüssig macht und so das Marktwachstum vorantreibt.
- Steigende Nachfrage nach Implementierungs- und Schulungsdienstleistungen treibt den Markt an
Ein bedeutendes Segment, das Wachstum verzeichnet, sind Design und Implementierung. Das Wachstum ist daher auf ein besseres Verständnis des Einsatzes von Automatisierungslösungen zur Reduzierung manueller Arbeit zurückzuführen. Da intelligente Prozessautomatisierungslösungen immer häufiger eingesetzt werden, steigt die Nachfrage nach Implementierungs- und Schulungsdiensten. Die Anbieter konzentrieren sich darauf, eine maßgeschneiderte Lösung bereitzustellen, die den Geschäftsanforderungen entspricht. Daher wird erwartet, dass die Nachfrage nach intelligenten Prozessautomatisierungsdiensten im Prognosezeitraum steigen wird.
- Hohe Akzeptanzquote treibt den Markt an
Die Intelligenz des maschinellen Lernens (ML) erlebt weltweit eine rasante Ausweitung des Umfangs und der Nutzung von IT und Automatisierung und erfreut sich einer hohen Akzeptanz. Sie minimiert menschliche Arbeit und Fehler durch optimale Ressourcennutzung und sorgt so für eine höhere Unternehmenseffizienz. Automatisierung mit künstlicher Intelligenz trägt zu einem besseren Kundenerlebnis und schnelleren Entscheidungsprozessen im gesamten Unternehmen bei, was das Marktwachstum fördert.
Gelegenheiten
- Steigende Investitionen in den Markt für intelligente Prozessautomatisierung
Unternehmen wechseln zu Homeoffice-Richtlinien, was erhebliche Auswirkungen auf die Investitionen in die Automatisierung betrieblicher Prozesse hat. Durch erhöhte Investitionen in Anwendungsbereiche wie Telemedizin, vorausschauende Wartung und virtuelles Gesundheitsmanagement wächst der Markt. Die Einführung von IPA-Lösungen hat in den meisten Nicht-IT-Branchen zugenommen, sodass der Markt im oben genannten prognostizierten Zeitraum eine Expansion im Markt für intelligente Prozessautomatisierung durch maschinelles Lernen (ML) erlebt.
- Der technologische Fortschritt schafft lukrative Wachstumschancen
Neue intelligente Automatisierungstechnologien wie virtuelle Agenten und die Verarbeitung natürlicher Sprache bieten unter anderem Möglichkeiten zur Verbesserung des Kundenerlebnisses, und Lösungen für maschinelles Lernen steigern die Effizienz erheblich. Systeme können automatisch aus Erfahrungen lernen und sich mit maschinellem Lernen verbessern, wodurch explizite Programmierung überflüssig wird. Somit kann der technologische Fortschritt lukrative Marktchancen schaffen.
Einschränkungen/Herausforderungen
- Mangel an hochqualifizierten und hochqualifizierten Arbeitskräften hemmt Wachstum
Um ein neues automatisiertes Betriebsmodell zu betreiben, sind qualifizierte Arbeitskräfte erforderlich. Entscheidend ist jedoch, Personen mit RPA- und KI-Expertise zu finden. Technische Kompetenz, ein Verständnis der Geschäftsabläufe des Unternehmens und die Fähigkeit, Managementtechniken anzupassen, sind allesamt Teil der maschinellen Lernintelligenz. Um die Automatisierung voranzutreiben, ist es ebenso wichtig, Mitarbeiter für die laufende Wartung, den Support und die Fehlerbehebung einzusetzen. Das Fehlen dieser Fähigkeiten kann das Wachstum einschränken.
- Erhöhte Cybersicherheitsbedrohungen bremsen die Marktexpansion
Cybersicherheit ist eines der größten Anliegen im digitalen Zeitalter. Malware- und Ransomware-Angriffe werden zu immer organisierteren Formen der Cyberkriminalität. Unternehmen erhalten täglich eine steigende Zahl an Sicherheitsbenachrichtigungen. Laut CERT-In wurden im ersten Halbjahr 2021 mehr als 6,07 Lakh Cybersicherheitsvorfälle gemeldet. Daher ist die Nutzung der Cybersicherheit für IPA notwendig, um eine effiziente Sicherheitsarchitektur zu schaffen, die das Unternehmen vor steigenden Risiken schützt. Laut einer Cisco-Umfrage, die den Markt einschränkt, beabsichtigen 77 % der Unternehmen, die Automatisierung ihrer Sicherheitsökosysteme in den kommenden Jahren zu erhöhen.
Dieser Marktbericht zur intelligenten Prozessautomatisierung durch maschinelles Lernen (ML) enthält Einzelheiten zu neuen Entwicklungen, Handelsvorschriften, Import-Export-Analysen, Produktionsanalysen, Wertschöpfungskettenoptimierungen, Marktanteilen, Auswirkungen inländischer und lokaler Marktteilnehmer, analysiert Chancen in Bezug auf neue Einnahmequellen, Änderungen der Marktvorschriften, strategische Marktwachstumsanalysen, Marktgröße, Kategoriemarktwachstum, Anwendungsnischen und -dominanz, Produktzulassungen, Produkteinführungen, geografische Expansionen und technologische Innovationen auf dem Markt. Um weitere Informationen zum Markt für intelligente Prozessautomatisierung durch maschinelles Lernen (ML) zu erhalten, wenden Sie sich an Data Bridge Market Research, um ein Analyst Briefing zu erhalten. Unser Team hilft Ihnen dabei, eine fundierte Marktentscheidung zu treffen, um Marktwachstum zu erzielen.
Kürzliche Entwicklungen
- Im Jahr 2021 arbeiteten Cisco und IBM bei der Koordination und Verwaltung von 5G-Netzwerken zusammen.
- Laut HCL Technologies können Benutzer des Google Cloud Marketplace im Jahr 2021 jetzt DRYiCE iAutomate erwerben.
- Im Jahr 2021 kündigte IBM das Debüt von IBM Cloud Pak for Network Automation an.
- Um die Zusammenarbeit fortzusetzen, verlängerten Atos und du den Vertrag im Jahr 2021 um weitere fünf Jahre. Die Modernisierung von Anwendungen und die digitale Transformation werden du durch diese Zusammenarbeit erleichtern.
- Im Jahr 2020 hat die Pega-Plattform laut Pegasystems eine neue Verbesserung erhalten. Pega Process AI verfügt jetzt über eine neue Funktion, die Unternehmen bei der Optimierung von Geschäfts- und Kundenabläufen in Echtzeit unterstützt.
Globaler Markt für intelligente Prozessautomatisierung durch maschinelles Lernen (ML)
Der Markt für intelligente Prozessautomatisierung durch maschinelles Lernen (ML) ist segmentiert auf der Grundlage von Komponenten, Typ, Technologie, Organisationsgröße, Anwendung, Geschäftsfunktion, Bereitstellungsmodus und Endbenutzer. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen dabei helfen, strategische Entscheidungen zur Identifizierung der wichtigsten Marktanwendungen zu treffen.
Komponente
- Lösungen
- Software-Tools
- Plattformen
- Dienstleistungen
- Professionelle Dienste
- Beratung/Consulting
- Design und Implementierung
- Ausbildung
- Support und Wartung
- Verwaltete Dienste
Typ
- Strukturiert
- Unstrukturiert
Technologie
- Verarbeitung natürlicher Sprache
- Maschinelles Lernen und Deep Learning
- Neuronale Netze
- Virtuelle Agenten
- Mini-Bots
- Computer Vision
- Andere
Größe der Organisation
- Große Unternehmen
- KMU
Anwendung
- IT-Betrieb
- Kontaktcenter-Verwaltung
- Automatisierung von Geschäftsprozessen
- Bewerbungsmanagement
- Inhaltsverwaltung
- Sicherheitsmanagement
- Andere
Reisen und Gastgewerbe
Geschäftsfunktion
- Informationstechnologie
- Finanzen und Buchhaltung
- Personalwesen
- Betrieb und Lieferkette
Bereitstellungsmodus
- Auf dem Gelände
- Wolke
Endbenutzer
- Banken, Finanzdienstleistungen, Versicherungen (BFSI)
- Telekommunikation und IT
- Transport und Logistik
- Medien und Unterhaltung
- Einzelhandel und E-Commerce
- Herstellung
- Gesundheitswesen und Biowissenschaften
- Andere
- Personalmanagement
- Vorfalllösung
- Dienstorchestrierung
- Ausbildung
- Regierung und öffentlicher Sektor
- Hilfsmittel
Regionale Analyse/Einblicke zum Markt für intelligente Prozessautomatisierung mit maschinellem Lernen (ML)
Der Markt für intelligente Prozessautomatisierung im Bereich maschinelles Lernen (ML) wird analysiert und es werden Erkenntnisse und Trends zur Marktgröße nach Komponenten, Typ, Technologie, Organisationsgröße, Anwendung, Geschäftsfunktion, Bereitstellungsmodus und Endbenutzer wie oben angegeben bereitgestellt.
Die im Marktbericht zur intelligenten Prozessautomatisierung durch maschinelles Lernen (ML) abgedeckten Länder sind die USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika.
Nordamerika dominiert den Markt und wird seinen Dominanztrend im Prognosezeitraum weiter ausbauen. Die Hauptfaktoren, die der Dominanz der Region zuzuschreiben sind, sind: Neben der Präsenz verschiedener Marktteilnehmer in der Region werden Prozessmanagement- und Automatisierungslösungen in Unternehmen immer häufiger eingesetzt. Darüber hinaus wird das regionale Wachstum durch die zunehmende Einführung von Prozessmanagement- und Automatisierungslösungen in Unternehmen in den Vereinigten Staaten vorangetrieben. Die Haupttreiber des segmentalen Wachstums sind erhöhte Ausgaben für die Optimierung des Geschäftsbetriebs und die weit verbreitete Einführung modernster Technologien wie KI, maschinelles Lernen und RPA.
Der asiatisch-pazifische Raum wird im Prognosezeitraum die höchste Wachstumsrate aufweisen, da die Region Cloud-basierte Technologien einführt und das Bewusstsein für Automatisierung, maschinelles Lernen und künstliche Intelligenz wächst. Die Nachfrage nach intelligenten Prozessautomatisierungslösungen und -diensten wird durch das wachsende Bewusstsein für Automatisierung, maschinelles Lernen und künstliche Intelligenz zusätzlich angekurbelt. Die wichtigsten Treiber des regionalen Marktwachstums sind Globalisierung, wirtschaftliche Entwicklung, Digitalisierung und die zunehmende Einführung Cloud-basierter Technologien.
Der Länderabschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Prognoseanalyse der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.
Wettbewerbsumfeld und maschinelles Lernen (ML) Intelligente Prozessautomatisierung Marktanteilsanalyse
Die Wettbewerbslandschaft des Marktes für intelligente Prozessautomatisierung durch maschinelles Lernen (ML) liefert Details nach Wettbewerbern. Die enthaltenen Details sind Unternehmensübersicht, Unternehmensfinanzen, erzielter Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt für intelligente Prozessautomatisierung durch maschinelles Lernen (ML).
Einige der wichtigsten Akteure auf dem Markt für intelligente Prozessautomatisierung mittels maschinellem Lernen (ML) sind:
- Automation Anywhere, Inc. (USA)
- UiPath (USA)
- Blue Prism Limited (Großbritannien)
- Pegasystems Inc. (USA)
- AntWorks (Singapore)
- NIZZA (Israel)
- Kofax Inc. (USA)
- SAP SE (Deutschland)
- AutomationEdge (USA)
- Larc AI (Pty) Ltd. (Südafrika)
- Autologyx (Großbritannien)
- Sanbot Innovation Technology., Ltd (China)
- Cinnamon Inc. (Japan)
- Wipro (Indien)
- Xerox Corporation (USA)
- TATA Consultancy Services Limited. (Indien)
- IBM (USA)
- Atos SE (Frankreich)
- Capgemini (Frankreich)
- Accenture (Irland)
Artikelnummer-